Process Failure Modes

James Forshaw @tiraniddo
Recon 2016

What I'm Going to Talk About

Dig into the Windows Process Creation APIls and Low-level stuff.
Classic bugs when creating processes, especially in privileged code
Some silly tricks to confuse IR

Based primarily on Windows 10 build 10586

This’ll be a C:\Program.exe Free Zone!

Thanks to Alex lonescu and mj32 for various useful insights in this research.

James Forshaw @tiraniddo

2

Windows Process Creation APlIs

James Forshaw @tiraniddo

Win32 APIs

James Forshaw @tiraniddo 4

In the Beginning Was... NtCreateProcess

Kernel

James Forshaw @tiraniddo

5

In the Beginning Was... NtCreateProcess

@

NtOpenFile()

Kernel

James Forshaw @tiraniddo

In the Beginning Was... NtCreateProcess

@ @

NtOpenFile() NtCreateSection()

Kernel

James Forshaw @tiraniddo

In the Beginning Was... NtCreateProcess

Kernel

@

@

©)

NtOpenFile()

NtCreateSection()

NtCreateProcess()

James Forshaw @tiraniddo

8

In the Beginning Was... NtCreateProcess

@ @ ® @

NtOpenFile() NtCreateSection() NtCreateProcess() NtCreateThread()

Kernel ‘
A A A

James Forshaw @tiraniddo

Little Tweaks to make NtCreateProcessEx

NTSTATUS
_Out
_In opt
In
_In opt
_In opt
~In opt
In

) ;

NtCreateProcessEx (
PHANDLE ProcessHandle,
ACCESS MASK DesiredAccess,

POBJECT ATTRIBUTES Ob%ﬁfﬁﬁéﬁfﬁggg;;j’
HANDLE ParentProcess,
ULONG Flags, =

_ Handle to parent
process to
inherit from

Assorted Flags

HANDLE SectionHandle,

HANDLE DebugPort,

HANDLE ExceptionPort,

ULONG Unused // At least in Win8+

BreakawayJob 0x01
NoDebugInherit 0x02
InheritHandles 0x04

~ Optional Image
Section Handle

James Forshaw @tiraniddo 10

Vista Protected Processes

Kernel

NtOpenProcess

James Forshaw @tiraniddo

11

So Then Came... NtCreateUserProcess

¢ I NtCreateUserProcess() Open and Map Executable Allocate Process Allocate Thread
erne I I I

James Forshaw @tiraniddo 12

NtCreateUserProcess

NTSTATUS NtCreateUserProcess (
Out PHANDLE ProcessHandle,

Out PHANDLE ThreadHandle,
In ACCESS MASK ProcessDesiredAccess,

In ACCESS MASK ThreadDesiredAccess,

_In opt POBJECT ATTRIBUTES ProcessObjectAttributes,
~In opt POBJECT ATTRIBUTES ThreadObjectAttributes,
In ULONG ProcessFlags,

~In VULONG ThreadFlags,
~In opt PRTL USER PROCESS PARAMETERS ProcessParameters,
~Inout PPS CREATE INFO Createlnfo,

~In opt PPS ATTRIBUTE LIST Attributelist
) ;

James Forshaw @tiraniddo

13

User Process Parameters

struct RTL USER PROCESS PARAMETERS
{
//
HANDLE ConsoleHandle;
ULONG ConsoleFlags;
HANDLE StandardInput;
HANDLE StandardOutput;
HANDLE StandardError;
CURDIR CurrentDirectory;
UNICODE STRING DllPath;
UNICODE STRING ImagePathName;
UNICODE STRING CommandLine;
PVOID Environment;

//

struct PEB

{

};

UCHAR InheritedAddressSpace;
UCHAR ReadImageFileExecOptions;
UCHAR BeingDebugged;

UCHAR BitField;

//

PPEB LDR DATA Ldr;

—PRTL USER PROCESS PARAMETERS

ProcessParameters;

//

James Forshaw @tiraniddo

14

Create Info struct PS_INIT STATE

{
USHORT Flags;

struct PS CREATE INFO ﬂ' USHORT ProhibitedImageCharacteristics : ;
{ ACCESS MASK AdditionalFileAccess;
SIZE T Size; b
PS CREATE STATE State;
union { struct PS SUCCESS STATE
PS INIT START InitState; {
PS SUCCESS STATE SuccessState; UCHAR Flags;
/] HANDLE FileHandle;
}s HANDLE SectionHandle;
}s ULONGLONG UserProcessParametersNative;

ULONG UserProcessParametersWowb6t4;
ULONG CurrentParameterFlags;
ULONGLONG PebAddressNative;

ULONG PebAddressWow64;

ULONGLONG ManifestAddress;

ULONG ManifestSize;

James Forshaw @tiraniddo 15

Process and Thread Attributes

e Kernel uses a list of attributes to extend system call functionality
o New attributes are added in newer versions of Windows

Attribute
PsAttributeParentProcess
PsAttributeToken
PsAttributeClientld
PsAttributelmageName
PsAttributeHandleList
PsAttributeMitigationOptions

PsAttributeProtectionLevel

Data Type

HANDLE to a process

HANDLE to a token

Pointer to a CLIENT _ID structure to get PID and TID
Pointer to a null terminated wide character string
Array of HANDLEs to inherit

Pointer to a INT64 containing mitigation policy bitmask

Pointer to a PS_PROTECTION_LEVEL structure

James Forshaw @tiraniddo

16

What has CreateProcessinternal Ever Done For Us?

Registers the process manifest with CSRSS (though not the process itself)

Check whether the process should be elevated
o Returns error if process manifest requires elevation

Handles IFEO Debugger settings (well sort of)

Handles spawning cmd.exe in response to executing a batch file

Looks up application compatibility settings and applies them to new process
Startup VDM if running a Win16/DOS application (you’d assume on 32 bit only!)
Check if executable is blocked by Software Restriction Policy (not AppLocker)

James Forshaw @tiraniddo

17

Session Spaces

Session Space 0

Local System Logon Session

User Process

User Process

User Process

Session Space 1

. User Logon Session UAC Logon Session

User Process
User Process

User Process

Session Space N

. Normal User Logon Session

User Process

User Process

James Forshaw @tiraniddo

18

Setting the Session ID

® SessionIDis afield in the process token
® Set using NtSetIinformationToken
o Needs TCB privilege to set session ID
e Can create new sessions by specifying the Create Session process flag
o Needs SeLoadDriverPrivilege to attach to a new session
e Can also be set without need TCB privilege if you have a handle to a process in a
different session.
o If you have a process and you assign it a new token using NtSetinformationProcess it
will set the SessionID of the old primary token
o If you use the process as the parent of a new process the parent’s token will have the
Session ID of the caller process set instead

James Forshaw @tiraniddo

19

Parent Process

e By default the parent of a new process is the one calling NtCreateUserProcess

e Can specify a new parent process using the Parent Process Attribute
o Handle must have PROCESS CREATE_PROCESS access right, a GENERIC_WRITE access

e Defaults to inheriting the primary token from the parent
o Can be used to spawn a System Process with only SeDebugPrivilege

James Forshaw @tiraniddo 20

DEMO

Parent Processes

James Forshaw @tiraniddo

21

Restriction on Explicit Process Token

e Assigned through specifying Token Process Attribute, or after process creation
using NtSetInformationProcess
e |f caller doesn’t have Assign Primary Token Privilege one of two tokens are allowed

Parent Token Sibling Token

Process Token

Token ID
il Process Token\ /Assigned Token
\ /\ j OR Equal
Equal Parent Token < > Parent Token
ID ID
Equal
Parent Token A qua
ID uth ID j \ Auth ID
Assigned Token
\ 4
CreateRestrictedToken DuplicateToken

NtCreateLowBoxToken

James Forshaw @tiraniddo

22

CSRSS and the Pain of Subsystems

Register SXS Manifest

CreateProcessinternal

AU

Per-Session CSRSS

/- N

)

NtCreateUserProcess

Register Process and
Initial Thread

New Process

James Forshaw @tiraniddo

23

Handle Inheritance

e Unlike *nix exec Windows processes don’t automatically inherit open handles

e Handles must be marked as inheritable
o Creation time using API specific mechanism
o Using Set-Handle-Information with the HANDLE_FLAG_INHERIT flag

e Must specify the Inherit Handles process creation flag

e Allinheritable handles are passed to child from the parent process
o Can restrict what handles are passed using the Handle List process attribute

James Forshaw @tiraniddo 24

Process Handling Bug Classes

James Forshaw @tiraniddo 25

Process Creation Services

Privileged Service

CreateProcess(AsUser)()

Creation Could be UAC,

Secondary Logon, Task
Scheduler, WMI, BITS
etc.

James Forshaw @tiraniddo

26

Canonical “Safe” User Process Creation

BOOL CreateProcessForUser (HANDLE Token,
LPCWSTR CommandLine)

STARTUPINFO startInfo = {};
PROCESS INFORMATION procInfo = {};

Impersonate the
— target user during

ImpersonatelLoggedOnUser (Token) ; «—

ret = CreateProcessAsUser (Token, NULL, CommandLine);

RevertToSelf () ;
return ret;

CreateProcess

James Forshaw @tiraniddo

27

Let’s Look at how NtCreateUserProcess Opens Files

RtlInitUnicodeString(&name, Attributes->ImagePath);
InitializeObjectAttributes (&obja, &name,

OBJ FORCE_ACCESS CHECK {_OBJ KERNEL HANDLE |
OBJ CASE INSENSITIVE) ; Force Access

HANDLE hFile;
NTSTATUS status = ZwOpenFile(&hFile,
Attributes->AdditionalFileAccess | FILE EXECUTE,
&bja, ...); “~~~~__~_§~_§~~~Doesn,t
impersonate

process token

if (status < 0)
status = ZwOpenFile(&hFile, FILE EXECUTE, &obja,

.)

James Forshaw @tiraniddo

28

Bug Class: Creating User Process No Impersonation

BOOL CreateProcessForUser (LPCWSTR CommandLine)

{
STARTUPINFO startInfo = {};
PROCESS INFORMATION procInfo = {};

Capture the caller’s

token
RpcImpersonateClient () ; ‘/////////
HANDLE Token;

OpenThreadToken (GetCurrentThread(), &Token, ...);

RevertToSelf () ; Crtea_lée P;ocess
outside o

impersonation

return CreateProcessAsUser (Token, NULL, CommandLine) ;

James Forshaw @tiraniddo

29

Example Bug - PZ Issue 161

Windows: Task Scheduler Executable File Permissions Bypass

Project Member Reported by forshaw@google.com, Nov 11, 2014

Windows: Task Scheduler Executable File Permissions Bypass

Platform: Windows 8.1 Update 32/64 bit (7 doesn't seem to be vulnerable)
Class: Security Bypass

The Windows Task Scheduler can be abused by a low privileged user to execute files which they don't have access to because of
access control permissions. The only requirement is LocalSystem is allowed to access the executable file, and that the executable

doesn't need to access other resources from the same location (this rules out .NET applications which re-open their executable
process).

The bug comes from the task scheduler creating the process directly from the privileged service without impersonating the target
user. Even though the service is calling CreateProcessAsUser the API doesn't limit the process creation to the user's token,
instead the access check is done against the LocalSystem token. As long as the executable is reasonably standalone once it's
mapped into memory as LocalSystem it will be allowed to execute once the token is swapped for the low-privileged user.

Locking down executable files on disk is a common technique in Enterprise environments. This seems to circumvent Software
Restriction Policy (I've not tried AppLocker). Of course if you've got code executing already to setup the task it isn't clear if
that is more of a security issue. I suppose if the user's permitted to setup scheduled tasks it might be an issue.

\ Added Bonus, bypass of SRP

James Forshaw @tiraniddo 30

Bug Class: Creating Privileged Process While Impersonating User

BOOL DoSomeThingForUser ()

Privileged Process
{ f:reating while
RpcImpersonaFeCllent(); gmigﬁxgww
// Do something.
CreateProcess (NULL, "C:\\somepath\\somefile.exe ...");

// Do something else.
RevertToSelf () ;

Important: Process Token not
inherited from Impersonation Token

James Forshaw @tiraniddo 31

DosDevice Prefix During Impersonation

\??\c:\somefile.exe

Mame © Type SymLink
e — [# Global SymbolicLink \Global??
‘*
This can be disabled using the \Sessions\0O\DosDevices\X-Y\c:\somel\file.exe

OBJ_IGNORE_IMPERSONTED_DEVICE_MAP flag
But NtCreateUserProcess doesn’t specify the flag.

James Forshaw @tiraniddo 32

Creating Privileged Process

NtCreateUserProcess

Privileged Service

User Application

James Forshaw @tiraniddo

Creating Privileged Process

NtCreateUserProcess

Privileged Service

User Application

James Forshaw @tiraniddo

Creating Privileged Process

NtCreateUserProcess

Privileged Service

User Application

James Forshaw @tiraniddo

Creating Privileged Process

NtCreateUserProcess

Privileged Service Privileged Application

User Application

James Forshaw @tiraniddo

MS14-027

Wednesday, 21 May 2014

Impersonation and MS14-027

The recent MS14-027 patch intrigued me, a local EoP using ShellExecute. It seems it also intrigued others so
| pointed out how it probably worked on Twitter but | hadn't confirmed it. This post is just a quick write up of
what the patch does and doesn't fix. It turned out to he more complex than it first seemed and I'm not even
sure it's correctly patched. Anyway, first a few caveats, | am fairly confident that what I'm presenting here is
already known to some anyway. Also I'm not providing direct exploitation details, you'd need to find the actual
mechanism to get the EoP working (at least to LocalSystem).

| theorized that the issue was due to mishandling of the registry when querying for file associations.
Specifically the handling of HKEY _CLASSES ROOT (HKCR) registry hive when under an impersonation
token. When the ShellExecute function is passed a file to execute it first looks up the extension in the HKCR
key. For example if you try to open a text file, it will try and open HKCR\.fxt. If you know anything about the
registry and how COM registration works you might know that HKCR isn't a real registry hive at all. Instead
it's a merging of the keys HKEY_CURRENT_USER\Software\Classes and
HKEY_LOCAL_MACHINE\Software\Classes. In most scenarios HKCU is taken to override HKLM registration
as we can see in the following screenshot from Process Monitor (note PM records all access to HKLM
classes as HKCR confusing the issue somewhat).

@ RegOpenKey HKCU\Software\Classes\ b NAME NOT FOUND Desired Access: Query Value
@8 RegOpenkey HKCR\bdt SUCCESS Desired Access: Query Value

https://tyranidslair.blogspot.co.uk/2014/05/impersonation-and-ms14-027.html

James Forshaw @tiraniddo

37

Bug Class: Mismatched Impersonation to Process Token

Process token

- —— specified explicitly

BOOL CreateProcessForUser (HANDLE Token,
LPCWSTR CommandLine)

STARTUPINFO startInfo = {};
PROCESS INFORMATION procInfo = {};

Impersonate Client,

might not be the
RpcImpersonateClient () ; 4—,————————’—smm%mm%s

token
ret = CreateProcessAsUser (Token, NULL, CommandLine);

RevertToSelf () ;
return ret;

James Forshaw @tiraniddo

38

Example Bug - PZ Issue 692

Windows: CSRSS BaseSrvCheckVDM Session 0 Process Creation EoP

Project Member Reported by forshaw@google.com, Jan 5, 2016

Windows: CSRSS BaseSrvCheckVDM Session © Process Creation EoP
Platform: Windows 8.1, not tested on Windows 1@ or 7
Class: Elevation of Privilege

Summary:

The CSRSS BaseSrv RPC call BaseSrvCheckVDM allows you to create a new process with the anonymous token, which results on a new
process in session © which can be abused to elevate privileges.

Description:

CSRSS/basesrv.dll has a RPC method, BaseSrvCheckVDM, which checks whether the Virtual DOS Machine is installed and enabled. On
Windows 8 and above the VDM is off by default (on 32 bit Windows) so if disabled CSRSS tries to be helpful and spawns a process
on the desktop which asks the user to install the VDM. The token used for the new process comes from the impersonation token of
the caller. So by impersonating the anonymous token before the call to CsrClientCallServer we can get CSRSS to use that as the

primary token. As the anonymous token has a Session ID of @ this means it creates a new process in session @ (because nothing
else changes the session ID).

James Forshaw @tiraniddo

39

BaseSrvCheckVDM

® CSRSS call spawns a helper process on the user’s desktop to enable the VDM
e Implemented even in 64 bit Windows even though no VDM available

void BaseSrvCheckVDM() {
RpcImpersonateClient () ;
OpenThreadToken (..., &hToken);
HANDLE hPrimaryToken;
DuplicateTokenkEx (hToken, ...,
TokenPrimary, &hPrimaryToken) ;
RevertToSelf () ;

BasepImpersonateClientProcess() ;

CreateProcessAsUser (hPrimaryToken,
L"\\SystemRoot\\...");

CsrRevertToSelf ()

void BasepImpersonateClientProcess () {
HANDLE hProcess = GetCaller();
OpenProcessToken (hProcess, &hToken);
DuplicateToken (hToken,
SecurityImpersonation,
&hImpToken) ;
Impersonatel.oggedOnUser (hThread,
hImpToken) ;

James Forshaw @tiraniddo

40

Anonymous Token

Main Details | Groups | Privileges | Default Dacl | Misc | Operations |

Token

User: |NT AUTHORITYWANONYMOUS LOGON

User SID: |5-1&?

Token Type: Impersonatior
Impersonation Level: |mlﬁt :
Taken |D: |[IIH]]]]]—1]'IEE32?E

Authentication 1D: |[I]]]IH]]-1]]]]]3EE

Origin Login [D: |[I]]]]]]]—[IIH]I]]]]

Modified |0 |ummmmmmm42

Intearity Level | Untrusted

Session ID: [

Hevation Type: |Defaut Linked Token

“5YSTEM®

|00000000-00000000

Token has a
Session ID of O

James Forshaw @tiraniddo

41

Process Creation Services

NtCreateUserProcess

“User” Session X
Application

James Forshaw @tiraniddo

Process Creation Services

NtCreateUserProcess

“User” Session X
Application

James Forshaw @tiraniddo

Process Creation Services

NtCreateUserProcess

“User” Session X Session 0 Application
Application (Anonymous)

James Forshaw @tiraniddo

Process Creation Services

NtCreateUserProcess

“User” Session X Session 0 Application
Application (User)

James Forshaw @tiraniddo

What Can You Do in Session 0?

Session O since Vista is reserved only for services so being able to create a process
in that session could have unexpected consequences.

For example Sessions other than 0 can’t create Sections or Symbolic Links in
\BaseNamedObjects to prevent planting attacks:

if (Directory->SessionId !'= -1 &&
(Type == MmSectionObjectType || Type == ObpSymbolicLinkObjectType) &&
Directory->SessionId != PsGetCurrentProcessSessionId() &é&

1SeSinglePrivilegeCheck (SeCreateGlobalPrivilege, PreviousMode))

if (!'ObpIsUnsecureName (Name, CaseSensitive))
return STATUS ACCESS DENIED;

James Forshaw @tiraniddo

46

Find Bugs Using Process Monitor

Event | Process I Stack

Date: 15/06/2016 12:25:36,3549333

Thread: 33452

Class: File System

Operation: CreateFile

Result: SUCCESS

Path: C:Windows\System32\dlhost. exe <

Duration: 0.0000506

Desired Access: Read Data/List Directory, Execute/Traverse, Read Attributes, Synchronize
Disposition: Open

Options: Synchronous IO Mon-Alert, Mon-Directory File
Attributes: nfa

ShareMode: Read, Delete

Allocationsize: nfa

Impersonating: MT AUTHORITY\SYSTEM

iDpenF‘.esuIt: Opened

[| Next Highlighted Copy Al | |

Close

Set operation to CreateFile

Path ends with .exe

Detail contains open
for Execute/Traverse
Access

Detail contains
Impersonating (or
not)

James Forshaw @tiraniddo

47

Process Lifecycle

Running

Suspended

Active

Terminated

James Forshaw @tiraniddo

48

Windows Kernel Object Lifetimes

UGTHRSVC Properties

Details Security

Bazic Informatian

Mame: UGETHRSYC
Type: Section

FPerrmanent:

References

References: BE537

GQuata Charges
Paged: Y2

OK

?

Handles: 1 Mon-Paged: 176

Cancel

_—~ Kernel Reference Count

— User Handle Count

EPROCESS object not deleted until
both counts goto O

James Forshaw @tiraniddo

49

Kernel Objects Reference Graph

EPROCESS

Object

-

MM_SECTION
Object

e

FILE_OBJECT
Object

-

Impersonation
TOKEN Object

James Forshaw @tiraniddo

50

Terminated Process

e

Terminated
EPROCESS
Object

James Forshaw @tiraniddo

51

DEMO

Exposing Terminated Processes

James Forshaw @tiraniddo

52

Cross Session Terminated Processes

e When a user logs out the Session is terminated, that should also terminate the
process

e All handles are removed from terminated processes

e However we’ve seen that the kernel objects stick around if we there’s any
reference to the process or thread

e Even so what use would it be?

James Forshaw @tiraniddo 53

Example Bug - PZ Issue 483

Windows: NiCreateLowBoxToken Handle Capture Local DoS/Elevation of Privilege

Project Member Reported by forshaw@google.com, Jul 16, 2015

Windows: NtCreatelLowBoxToken Handle Capture Local DoS/Elevation of Privilege
Platform: Windows 8.1 Update, Windows 18, Windows Server 2612
Class: Local Dos/Elevation of Privilege

Summary:

The NtCreatelLowBoxToken API allows the capture of arbitrary handles which can lead to to local DoS or elevation of privilege.

Description:

The NtCreatelLowBoxToken system call accepts an array of handles which are stored with the new token. This is presumably for
maintaining references to the appcontainer specific object directories and symbolic links so that they do not need to be
maintained anywhere else. The function, SepReferencelLowBoxObjects which captures the handles has a couple of issues which can

lead to abuse:

1) It calls ZwDuplicateObject which means the API can capture kernel handles as well as user handles.
2) No checks are made on what object types the handles represent.

James Forshaw @tiraniddo

54

NtCreateLowBoxToken

NTSTATUS NtCreatelLowBoxToken (
Out PHANDLE TokenHandle,
In HANDLE ExistingTokenHandle,

In ACCESS MASK DesiredAccess,

_In opt POBJECT ATTRIBUTES ObjectAttributes,
In PSID PackageSid,

In ULONG CapabilityCount,

:In_opt_ PSID AND ATTRIBUTES Capabilities,
In ULONG HandleCount,

:In_opt_ HANDLE *Handles = Arbitrary List of Handles

) ;

James Forshaw @tiraniddo

59

Reference Cycle

EPROCESS

Object

-

MM_SECTION
Object

e

FILE_OBJECT
Object

-

Impersonation
TOKEN Object

Reference Cycle

James Forshaw @tiraniddo

56

Terminated Reference Cycle

Terminated
EPROCESS
Object

-

Impersonation
TOKEN Object

Reference Cycle

James Forshaw @tiraniddo

57

Session ID Use-After-Free

NtCreateUserProcess

WMI Win32_Process
Create

Dead Session Z (User)

“User” Session X
Application

James Forshaw @tiraniddo

Session ID Use-After-Free

NtCreateUserProcess

WMI Win32_Process
Create

Unused Session Z

“User” Session X
Application

James Forshaw @tiraniddo

Session ID Use-After-Free

NtCreateUserProcess

WMI Win32_Process
Create

“User” Session X
Application

James Forshaw @tiraniddo

Session ID Use-After-Free

NtCreateUserProcess

WMI Win32_Process
Create

“User” Session X Session Z Application
Application (User)

James Forshaw @tiraniddo

Bonus Material

Tricks to confuse the incident responders

James Forshaw @tiraniddo 62

Fooling WMI

e WMI is getting a resurgence, people using for all sorts of things
including remote scanning of computers for malicious code
e Commonly enumerates Win32_ Process instances
® Any way of hiding processes from WMI?
o No, but, where does Win32 Process get the path to the process
from?

James Forshaw @tiraniddo 63

Loading Executable Path

Process: :LoadCheapPropertiesNT () {
HANDLE h = OpenProceSS(PROCESS_VM_READ |
PROCESS QUERY INFORMATION, FALSE, pid) ;
PEB peb;
ReadPeb (h, &peb);
RTL USER PROCESS PARAMETERS ProcessParams;
ReadProcessMemory (h, peb.ProcessParameters,
&ProcessParams, sizeof (ProcessParams));
CHString Path;
GetModuleName (h, &ProcessParams, &Path);
CInstance: :SetWCHARSplat (this, L"ExecutablePath", Path);

[/ ...

James Forshaw @tiraniddo 64

DEMO

Fooling Win32_Process Enumeration

James Forshaw @tiraniddo

65

Erasing

e Can’tde

Our Tracks

ete or write to an EXE file once the process is created

" File In Use

The action can't be completed because the file is open in demo.exe

Close the file and try again.

demo.exe
Date created: 15/06/2016 10:14
Size: 175 KB

Try Again

Fewer details

Cancel

hd

James Forshaw @tiraniddo

66

Let’s Look Back at how NtCreateUserProcess Opens Files

HANDLE hFile; Open with

“Additional” access
rights specified in
. . Create Info
NTSTATUS status = IoCreate ekx (&hFile, ...,

AdditionalFileAccess | SYNCHRONIZE | FILE EXECUTE,
FILE SHARED READ | FILE SHARE DELETE);

\ Shared Mode
allows Read and

Delete

We can use this to open the file for write access.
NtCreateUserProcess will then return the file handle to us!

James Forshaw @tiraniddo

67

DEMO

Overwriting the Executable File

James Forshaw @tiraniddo 68

Deleting the File As Well

e File opened with FILE_SHARE_DELETE, surely this means we can delete the file by
specifying DELETE for AdditionalFileAccess?
e When File object used in image mapped the file is locked

o Trying to delete the file using NtSetinformationFile disposition information fails on the

handle
© You can open a new handle to the file with DELETE access but gives the same results

e We can the file first and set Delete On Close, however while the image section is
valid the delete will fail
e How can we get around this?

James Forshaw @tiraniddo

69

Self Deletion (Kind of anyway, "\ _(*Y) /)

NtCreateUserProcess

program.exe progra m .exe
Starting Application

James Forshaw @tiraniddo 70

Self Deletion (Kind of anyway, "\ _(*Y) /)

NtCreateUserProcess

program.exe

Starting Application program.exe

James Forshaw @tiraniddo 71

Self Deletion (Kind of anyway, "\ _(*Y) /)

NtCreateUserProcess Console Driver

program.exe

program.exe conhost.exe

James Forshaw @tiraniddo

Self Deletion (Kind of anyway, "\ _(*Y) /)

NtCreateUserProcess Console Driver

program.exe

conhost.exe

James Forshaw @tiraniddo 73

DEMO

Self Deletion Trick

James Forshaw @tiraniddo 74

Creating Processes Backed by DLLs

\Users\user:
\Users\user:
\Users\user:
\Users\user:
\Users\user:

[F]

1 = New-Object System.Diagnostics.ProcessStartInfo
=1.F1leName

=1 .Arguments

1.UseShel] lExecute = jfalse
System.Diagnostics.Process]::Start($s1)

1 20 S D

-ZUsershuser:

James Forshaw @tiraniddo

Prohibited Image Characteristics

® NtCreateUserProcess PS CREATE INFO supports a setting to automatically reject
certain values of the Characteristics Field in the PE Image Header

WORD SizeOfOptionalHeader
The size of an optional header that can follow this structure. In OBJs, the field is 0. In executables,

it is the size of the IMAGE_OPTIONAL_HEADER structure that follows this structure.

WORD Characteristics
Flags with information about the file. Some important fields:

void CreateProcessInternal () {
0x0001 There are no relocations in this file PS_CREATE_INFO CreatelInfo ;
CreateInfo.InitState.
0x0002 File is an executable image (not a OBJ or LIB) ProhibitedImageCharacteristics
= IMAGE FILE DLL;
0x2000 File is a dynamic-link library, not a program) NtCreateUserProcess (..., &Createlnfo);

James Forshaw @tiraniddo

DEMO

Creating a DLL as a Process

James Forshaw @tiraniddo

77

WRAP UP

James Forshaw @tiraniddo 78

Questions?

