Protecting binaries

Andrew Griffiths
andrewg(@felinemenace.org



Introduction

* This presentation 1s meant to be useful for people
of all skill levels. Hopefully everyone will get
something out of this presentation.

* This talk focuses on strategies, and mindsets, not
products.

* Technical details will mainly refer to Linux
unless otherwise specified, although the concepts
are portable to other operating systems.



Defence 1n depth

* Determining the threat model / what problems
you're trying to solve

— Casual copying
— Determining who leaked a copy

— Determined crackers

* Determining what measures will be suitable to
avold problems, and be feasible to implement

— Code obfuscation
- Watermarking

— Licensing types



Defence 1 depth (cont)

* Defence requires you to think like an attacker,
and how to best defend them from offence.

e Offensive measures?

— Chang Yu said: "Knowing the enemy enables you to
take the offensive, knowing yourself enables you to
stand on the defensive." He adds: "Attack 1s the secret
of defense; defense 1s the planning of an attack."

* As opposed to just displaying a message when
something has gone bad, wouldn't 1t be better to
mislead an attacker and waste some of their
time/resources?



Defence 1 depth (cont)

* Standard * Idealistic defence n
implementations depth for binaries

— Can usually be — When pieces are
analysed separately removed, 1t impacts the

_ Lends itself to correct operation of other
individual pieces being parts of the binary.
analysed, without — Layers are tightly
impacting the rest of integrated so that
the binary. everything must be

considered at once.

— Assumes layers will be
broken.



Watermarking

* Why watermark?
— Watermarking does not prevent against fraud.

* Fragile vs Robust watermarks
* Visible vs Invisible watermarks

* Watermarking values

— Counter
— Code constructs / code ordering

— Data 1nitialisation values

* Tamperproofing?



Obfuscation

e Source code

* Assembly level

— Junk code?

* Not unlike what viruses have contained (f.e Junkcomp)

* Not really applicable in this case. (Preventing signatures /
on access detection)

— Various aspects to obfuscation

* Code layout
e Data obfuscation
e Control obfuscation

* Preventative



Obfuscation (cont)

* Potency
— How hard 1s 1t to analyse by a human
* Resiliency

— Protection against:

e Attackers effort to write the un-obfuscator

* The program attempting to un-obfuscater

e Cost

— What impact does implementing the measures
involve?



Obfuscation (cont)

e Control flow obfuscation

— Opaque conditionals

* Used to mislead attackers, increase their workload,
decrease what can be done automatically

e Control flow

— Absolutely trivial example: xor eax, eax ; jnz Oxaddy
— Usually a lot more involved.

— “rewriting”’ 1nstruction context

* Determine context of the registers

— If they're important to that section of code you're analysing
— The relationship to other pieces of nearby code



Obfuscation (cont)

* Insert new instructions that modify the unimportant
registers / memory locations
— Usually there is just mov's, shifts, add / sub etc.

— If you add a section in memory and load/store from it, the analysis
tools now have to do a lot more work in order to remove those
constructs, 1f its possible at all (depending on how its
implemented). This is because the program now looks a lot more
like a proper program behaviour.

* Usually done before the program 1s compiled completely
(ie, operates on object files).

* Makes analysis by humans harder

— Loops
e Data obfuscation

— Converting static data to functions



Obfuscation (cont)

— Inserting more cross-references
— Inserting new functions into object orientated classes
- Adding new data to structures, loading / storing to it.

— Convert variables to classes, and have functions
which do the various operators on it, such as
multiplication, addition.

* Code layout obfuscation
— Basic blocks

* Re-ordering of instructions

* Independent obfuscation

— Blocks need to converge in the end



Obfuscation (cont)

* Register usage — Code flow reduction
example * Switch tables
e mov eax, | — Disadvantages to
obfuscation

* mov ebx, 2

e Performance impact
* add eax, ebx P

* Time to implement

* mov eax, 1 and mov ebx, 2
would be the first basic block.

* add eax, ebx would be the
second basic block.



License scheme implementation

e Effort needed to implement

* [fthey are not meant to have certain pieces of
code, don't compile it in. If they aren't meant to
have some data, don't include 1t in the
distribution.

* Combine the license aspect with the program
aspect, so that attempting to break the license
implementation has flow on effects to the correct
operation with the program.

— Use license information for logic and data choices.



License schemes (cont)

 Small checksums can be used to ensure people
have not mistyped a license code without giving
anything away about the correctness of the key.

* In general, do not sanity-check the license data,
just use 1t for 1t's respective operations.

 Think like an attacker, find your weak spots, and
patch them.



Virtual Machines

* What are they?

— Java, NET assembly (CLR)

— Either:

* Completely byte code driven
* Or translates to CPU for native execution (JIT)

* Increases analysis time, as they have to fully
understand what the VM 1s doing.

— A lot of custom development may need to be done,
depending what you want to implement.

* Disadvantages



Virtual Machines

— Only needs to be analysed once, so it loses its
effectiveness.

* Can be improved limitedly by randomising what bytes map
to what instructions, how the instruction is made up, and
how parameters are accessed.

* The VM 1nstructions to be executed could configure the
VM, making it a bit harder to analyse.



“Bastardising” the file format

* Generally aims to:

— Cause an analysis application to behave unexpectedly,
while the Operating system loads it fine

— be exploited / caused to crash

— generate incorrect output
* Standard arms race

— Only effective for a while.

— Can be useful against tools widely used but not
currently actively supported by their author (Ollydbg
vl for example)



“Bastardising” the file format

* Disadvantages

— Portability
* Different OS releases (Win 98 vs Win NT)

* Emulator programs, such as WINE.

— Sometimes its useful to debug your own programs

- Some AV's make pick up on the changes



Summary

* Use multiple layers of protections that rely on
each other

* Don't check values for consistency / correctness,
just use them straight away

* Learn to attack your own implementation, in
order to 1dentify weaknesses

— Perhaps keep an eye out on various reverse
engineering forums / cracking forums.

— Realise when and where to focus your efforts.

* Have fun in the process :)



Summary (cont)

* (Given enough time, skill and resources, pretty
much everything can be broken.



Questions?

Thanks for attending

If you have any feedback, please contact me.

Thanks to all the FM and PTP people.



Bonus slide
(don't worry 1f you don't get these)

gcc dmeiswrong.c -0 dmeiswrong
13:21 < nemo> buf = malloc(size * 12);
</3

http://church.felinemenace.org

rm -rf diary.of.pike

It's ok, SACTIVITY isn't for everyone.
IPv6-compatible Poodles

Melting fish

“This 1s your warning shot.”
Sometimes you hurt me.

In internet it's everytime

Deaths of civilisations.



