
http://www.reverse-engineering.net

HardeningHardening RegistrationRegistration NumberNumber
ProtectionProtection SchemesSchemes againstagainst

Reverse Code Engineering Reverse Code Engineering withwith
MultithreadedMultithreaded Petri NetsPetri Nets

Talk at RECON2005

Thorsten Schneider



2

OverviewOverview

• Introduction
• Petri Nets – Overview
• Petri Nets – Example
• Protection by Obscurity and Obfuscation
• Example: Protection with Petri Nets
• Discussion
• Results



3

KnownKnown ProblemsProblems

Software Piracy
• Crackz
• Keygenz

Plagiarism
• Code Ripping
• Algorithm Theft

Viruses
• Encryption
• Hiding

Problem

Reverse Code Engineering
• Disassembly (Static + Dynamic)
• Decompilation
• Code Transformation
• Code Flow Reconstruction
• Analysis + Understanding



4

One One MethodMethod of Resolutionof Resolution

Decrease Code Understanding

• Hardening through Obscurity
• Hardening through Obfuscation
• Hardening through Complexity
• Manipulation of 

Code Flow Graphs
• Manipulation of 

Information Flow Graphs
• …
• Petri Nets!

From: "Jim Coplien" <cope@research.bell-labs.com> 
> Date: Tue, 22 Dec 1998 13:03:56 -0600 
> To: Lalita Jagadeesan <lalita@research.bell-labs.com>, god, tball
> Subject: a program for your flow and testing tools
> 
> /* 
> * seriously -- run it :-) 
> */ 
> #include <stdio.h> 
> main(t,_,a) 
> char *a; 
> { 
> return!0<t?t<3?main(-79,-13,a+main(-87,1-_,main(-86,0,a+1)+a)): 
> 1,t<_?main(t+1,_,a):3,main(-94,-27+t,a)&&t==2?_<13? 
> main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-72?main(_,t, 
>"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l+,/n{n+,/+#n+,/#\
> ;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l \
> q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n';d}rw' i;#\
> ){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw' iK{;[{nl]'/w#q#n'wk nw' \
> iwk{KK{nl]!/w{%'l##w#' i; :{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \
> ;;{nl'-{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ') }+}{rl#'{n' ')# \
> }'+}##(!!/") 
> :t<-50?_==*a?putchar(31[a]):main(-65,_,a+1):main((*a=='/')+t,_,a+1) 
> :0<t?main(2,2,"%s"):*a=='/'||main(0,main(-61,*a, 
> "!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry"),a+1); 
> } 



5

Petri Nets: Petri Nets: OverviewOverview

• A Petri Net is a method, to represent processes in an abstract way

• Uninteresting Processes (for us):
– Factory work flows
– Business flows
– Communication flows (protocols)
– Device controls
– Handicraft manuals
– Biological Pathways (Bioinformatics)

• Interesting Processes:
– Software Development Processes
– Software Algorithms
– Registration Number Schemes

• Petri Nets are graphs

• Advantage: Multithreaded processing!



6

Petri Net Petri Net TypesTypes

• Discrete Petri Net
• Autonomous Petri Net
• Non-Autonomous T-Timed and P-Timed Petri Net
• Stochastic Petri Net
• Continuous Petri Net
• CSPN (Constant Speed Petri Net)
• VSPN (Variable Speed Petri Net)
• Hybrid Petri-Net 



7

Petri Nets: Formal DefinitionPetri Nets: Formal Definition

A Petri Net is a 6-Tupel (S,T,F,K,W,M0) with:

• S: non-empty set of locations (Places)
• T: non-empty set of Transitions
• F: non-empty set of edges (Arcs)

• K: Capacity of Places for Tokens
• W: Weight of Edges
• M0: Startup Marking

Very Simplified:

• 3 different objects: Places, Transitions and Tokens
• No object (Places, Transitions) can belong to both sets
• Between Places and Arcs there might be a relation (F)
• Can simulate „something“

• So a Petri Net is a kind of a runable process graph



8

Petri Nets: BasicsPetri Nets: Basics

Firing ProcessBefore Transition After Transition

PlaceTransition

Token

Arc

• Firing of Transitions changes network Tokens (located at the Places)
• Only one Transition can fire
• If so, a Transition removes as many Tokens, as the Weight of the Arcs defines
• The Places after the Transition receive the Tokens

• The Places before the Transition need to have enough Tokens
• The Places after the Transition need to have enough empty space for new Tokens. 

• A Transition which is able to fire is called activated
• But: activated does not mean that it is really fired!

• A Petri Net containing no activated Transitions is a dead Petri Net



9

Petri Nets Petri Nets mightmight save save lifeslifes! ! 

The Five Chinese Sages Problem [Dijkstra]:

Five Chinese sages are sitting at the circle table and have a 
dinner. Between of each two sages is only one stick. But for 
eating each of them needs two sticks in a moment. 
Obviously, if all sages takes sticks from the left side and 
waiting sticks from right side they all will die through
starvation (dead loop).

DIJKSTRA, E.W.: Co-operating sequential processes. In Programming Languages, F. Genuys, Ed., 43–112, 1968.



10

Petri Nets Petri Nets mightmight save save lifeslifes!!

• Places P1...P5 introduce sticks
• All sticks are on the table at the first

moment
→ each place has a marker inside

• Transitions Ti and Ei introduce
sages states:

• Ti → sagei thinks
• Ei → sagei eats.

• To pass from Mi state (obviously, 
no one can satisfy his hunger
through his thoughts) to Ei state, 
both sticks (on left and right sides) 
must be on the table at one
moment.



11

Petri Nets: Petri Nets: ConflictsConflicts

• Pre-Conflict:
– 2 Transitions need the same Token to Fire
– Both Transitions are activated, but only 1 can fire
– This is no erroneous Petri Net, but models the decision between 2 

alternatives

• Post-Conflict:
– Similar to Pre-Conflict
– 2 Transitions produce Tokens, but the capacity of the Places is to low

for all Tokens
– Solution is dependant on conflict strategy

• Confusion:
– Is a doubled conflict
– One Transition conflicts with two different Transitions



12

ProtectionProtection by by ObscurityObscurity and and ObfuscationObfuscation

P = Program, T = Transformation, S = Source Code

Given a program P and an obfuscated program P‘:

• P‘ has the same observable behavior as P, i.e., the transformations are
semantics-preserving.

• The obscurity of P‘ maximized, i.e., understanding and reverse engineering P‘ will 
be strictly more time-consuming than understanding and reverse engineering P.

• The resilience of each transformation Ti(Sj) is maximized, i.e., it will be difficult to 
construct an automatic tool to undo the transformations

• The stealth of each transformation Ti(Sj). is maximized, i.e., the statistical
properties of S‘j are similar to those of Sj.

• The cost (the execution time/space penalty incurred by the transformations) of P‘ 
is minimized.

Watermarking, Tamper-Proofing, and Obfuscation - Tools for Software Protection, Christian S. Collberg and Clark Thomborson



13

ProtectionProtection by by ObscurityObscurity and and ObfuscationObfuscation

Code obfuscation is very similar to code optimization, except:

• with obfuscation, we are maximizing obscurity while
minimizing execution time

• with optimization, we are just minimizing execution time.

Watermarking, Tamper-Proofing, and Obfuscation - Tools for Software Protection, Christian S. Collberg and Clark Thomborson



14

ExampleExample: : ProtectionProtection withwith Petri NetsPetri Nets

• Markable: P0 to P3
• P7 is pre-marked ! 
• Lowest Priority to T2
• Application gets registered
when T2 is fired

Registration Number Input

Registration Number Check

Solution:

P0 = 1
P1 = 0
P2 = 1
P3 = 1

Solution Key Space: 24 = 16 tries
→ Simple for Bruteforce
→ Simple for Brain



15

ExampleExample: : ProtectionProtection withwith Petri NetsPetri Nets

• Increasing Complexity
→ Decreasing Understanding

• Simple Copy & Paste possible
→ P1 not possible
→ Reachability Problem of T2

• Introduction of new Places and 
Transitions might be necessary

Solution:

P1 = 0, P2 = 1, P3 = 1, P8 = 1,
P9 = 0, P10 = 1, P11 = 1

Solution Key Space: 
216 = 65536 tries
→ Harder for Bruteforce
→ Harder for Brain



16

ExampleExample: : ProtectionProtection withwith Petri NetsPetri Nets
Changed Sub Petri Net to attach at Place at Place P1



17

ExampleExample: : ProtectionProtection withwith Petri NetsPetri Nets

Now imagine:

• Each Transition is a Thread
• Each Place is a Thread

• Each Thread is protected different:
• Anti-Debugging
• Anti-Disassembly
• Self-Encryption
• Watchdogs
• ... and much more …

• Each Arc is an encrypted
communication protocol

• Each Token is an encrypted
Object

How would you analyse this ?



18

ExampleExample: : ProtectionProtection withwith Petri NetsPetri Nets

Now imagine:

1. You have a disassembly

2. You try to reconstruct the
Petri Net from disassembly
or debugging

3. You need to trace or debug
parallel processes to 
understand the parallel 
processes

4. And all these ugly protection
tricks within each Thread!

How would you analyse this ?



19

Problems of Problems of ComplexityComplexity

• Research only focus on decreasing complexity
→ Many research groups
→ Much research

• We want to increase complexity
→ No research groups
→ No research yet
→ But (!): decreasing complexity can be inverted!
→ But: No algorithms yet



20

DiscussionDiscussion: Pro: Pro

• High complexity

• High obscurity

• Reconstruction of Petri Net from binary code is hard up to 
impossible

• Protection is hard up to impossible to understand



21

DiscussionDiscussion: Contra: Contra

• Once reconstructed, it is possible to simplify the Petri Net

• Once simplified, it is possible to run reduced Bruteforce Attacks

• Once bruteforced, it is possible to get a valid key or Keygen

• Protection still breakable (e.g. Patching) at the Input Layer of the
protection

• Development of complex Petri Nets is very time consuming,
no automatism yet

• Implementation very time-consuming, no automatism yet



22

ResultsResults

• Petri Nets are an efficient way to obscure and to complex processes

• Resistant against Bruteforcing

• But: Once analysed, they can be simplified

• Example source and binary available

• Fact: all software protection schemes have been cracked

• Fact: If a code is runable, you can crack it!

• Further research necessary!



23

ExampleExample CodeCode

Example Code with Online Disassembly

(http://pvdasm.reverse-engineering.net/PVPHP.php)



24

AcknowledgmentsAcknowledgments

• Robert Airapetyan (Polytechnical University of Odessa)

• RECON 2005 Team

• The anonymous reviewers

• The audience



25

AdvertisementAdvertisement

http://knoppix-re.reverse-engineering.net



26

QuestionsQuestions ??

Questions ?


	Hardening Registration Number Protection Schemes against Reverse Code Engineering with Multithreaded Petri Nets
	Overview
	Known Problems
	One Method of Resolution
	Petri Nets: Overview
	Petri Net Types
	Petri Nets: Formal Definition
	Petri Nets: Basics
	Petri Nets might save lifes!
	Petri Nets might save lifes!
	Petri Nets: Conflicts
	Protection by Obscurity and Obfuscation
	Protection by Obscurity and Obfuscation
	Example: Protection with Petri Nets
	Example: Protection with Petri Nets
	Example: Protection with Petri Nets
	Example: Protection with Petri Nets
	Example: Protection with Petri Nets
	Problems of Complexity
	Discussion: Pro
	Discussion: Contra
	Results
	Example Code
	Acknowledgments
	Advertisement
	Questions ?

