

Reverse Engineering Dynamic Languages

A Focus on Python

Aaron Portnoy , Ali Rizvi-Santiago

aportnoy@tippingpoint.com arizvisa@tippingpoint.com
P

About Us

Work in TippingPoint DVLabs (http://dvlabs.tippingpoint.com)

Responsible for bughunting, patch analysis, vuln-dev

Authors and contributors to…
Sulley Fuzzing Framework
PaiMei
PyMSRPC
OpenRCE.org

P

http://dvlabs.tippingpoint.com/
http://dvlabs.tippingpoint.com/

Talk Outline

We will be focusing on Python in its binary forms
Disassembling code
Code object modification
Runtime stuff

An example of reversing Python
Cheating at an MMORPG

P

Introduction to Dynamic Languages

What are the characteristics of a dynamic language?
Most tasks performed at runtime rather than during compilation

Advantages to dynamic languages
Development speed
Portability
Flexibility

Great for lazy coders (like us)

S

Why Python?

Implements many dynamic features

Rapidly gaining popularity

We were already familiar with its internals

S

a

Multiplayer Online Role Playing Game
10,000+ subscribers

Written in Python
Distributed in a binary form

Why this game?
Its TV commercial interrupted Robot Chicken
Pedram wanted to cheat at it

P

P

First Look

python24.dll
safe to assume, written in Python

What is this 130mb PYD file?
Google says frozen Python objects
Grepping tells us this is likely the source of interesting stuff

Panda3D Library
Made by Disney

P

What do we know about Python?

Source code compiled to objects
Interpreted

Python is a dynamic language
Type information must be present somewhere

Python implements a virtual machine
Byte code must also be present somewhere

S

Structure of a PYD

Let’s check it out in IDA

P

P

Python Serialization

Python’s ‘marshal’ module
Kind of like pickle, but handles internal types

What is this currently used for?
.pyc – cached code objects (for avoiding having to re-parse)
.pyz – squeezed code objects
.pyd – marshalled code objects stored in a shared object (.dll, .so, etc)

S

Python Code Object

What do we get when we deserialize?
An object of type ‘code’

Code object properties:
co_argcount, co_nlocals, co_stacksize, co_flags, co_code, co_consts,

co_names, co_varnames, co_filename, co_name, co_firstlineno,
co_lnotab, co_freevars, co_cellvars

Which is the most interesting to a reverser?
co_code – string representation of object’s byte code

P

Byte Code Primer

Instruction consists of a 1-byte opcode followed by an argument when required
Arguments are 16-bits

Has support for extended args
Used if your code has more than 64k of defined constants

Ridiculous getopt implementation?
Like gcc?

Data is not part of byte code
Index references into other code object properties

co_consts
co_names
co_varnames

P

Byte Code Example

 \x64\x02\x00
 \x64\x4E\x00
 \x64\x17\x00
 \x66\x03\x00
 \x55

P

Byte Code Example (cont.)

LOAD_CONST 2
LOAD_CONST 78
LOAD_CONST 23
BUILD_TUPLE 3
RETURN_VALUE

P

Code Object Modification

Code objects are immutable
BUT, you can clone an object, optionally modifying attributes
We call this “sneaking the type”™

>>> code = type(eval('lambda:x').func_code)
>>> help(code)
Help on class code in module __builtin__:

class code(object)
| code(argcount, nlocals, stacksize, flags, codestring,
| constants, names, varnames, filename, name,
| firstlineno, lnotab[, freevars[, cellvars]])
|
| Create a code object. Not for the faint of heart.

S

Introducing AntiFreeze

Tool for statically modifying code objects within a PYD
Web-based
Interface utilizes Ext-js javascript library

Components
Disassembly Engine
Assembler
Functionality for extracting code objects from a PYD

PE Parser
Intel Disassembler

P

P

P

P

P

Enough About Static Stuff

Time to explore runtime tricks…

S

((((Objects and Types) of Objects)) and Types) of Types)

In Python, there are objects and types

Every object has a type associated with it

Every object also inherits from the ‘object’ type
This also includes the ‘type’ type
So, all types inherit from the type type

Which also inherits from the object type

If you try to mentally graph those relationships, you may have an aneurism

P

Python Object Data Structure

0 int ob_refcnt
4 struct _typeobject* ob_type
8 int ob_size

All Instantiated Objects are prefixed with the following information:

ob_refcnt – is the reference counter for the object which is utilized for garbage
collection

ob_type – contains a pointer to the type of the object

ob_size – duh

S

Python Standard Types

All base types are exported by the python dll. Check your local dependency
viewer for all types.

0:001> dd 0x1663660 *this is the address of an object
01663660 00000002 1e1959d0 0000001c 0000001c
01663670 0000007f 01706498 1e051f70 dea555d0
01663680 0166c660 0166c630 7d8c4178 0166f598

0:001> ln 0x1e1959d0 *your ob_type goes here
(1e1959d0) python24!PyDict_Type
Exact matches:
 python24!PyDict_Type (<no parameter info>)

P

Execution of a Code Object

PyFrameObject*

PyEval_EvalCode(PyCodeObject* co, PyObject* globals,
PyObject* locals)

Binds Code object to globals()/locals() and returns a PyFrameObject

PyObject*

PyEval_EvalFrame(PyFrameObject* f)

PyEval_EvalFrame takes the new frame object and is responsible for actual
execution.

P

Concurrent execution of code objects

Multiple interpreters can exist in a single process
Each Interpreter has a list of threads associated with it

Concurrency is handled via a lock known as the GIL
Remember FreeBSD?

PyEval_EvalFrame is responsible for releasing the lock

S

Diving in With a Debugger

Key things we will need to identify
All existing interpreters
Threads associated with an interpreter
What's currently being executed?

S

Interpreters

The list of interpreters is a plain old stack
Just need to find a reference to the head of the stack.

“interp_head” in python-src/Python/pystate.c

0:001> u PyInterpreterState_Head *mad-friendly
python24!PyInterpreterState_Head:
1e08ce90 a1c0871b1e mov eax, [python24!1e1b87c0]
1e08ce95 c3 ret

S

Interpreter Data Structure

0 struct _is* next
4 struct _ts* tstate_head
8 PyObject* modules
c PyObject* sysdict
10 PyObject* builtins
14 PyObject* codec_search_path
18 PyObject* codec_search_cache
1c PyObject* codec_error_registry

S

Threads

The list of interpreters is also just a plain old stack

0 struct _ts* next
4 PyInterpreterState* interp
8 struct _frame* frame
c int recursion_depth
10 int tracing
14 int use_tracing
…
40 PyObject* dict
…
50 long thread_id ; this is your GetCurrentThreadId()

S

0 int ob_refcnt
4 struct _typeobject* ob_type
8 int ob_size

c struct _frame *f_back ; calling frame
10 PyCodeObject *f_code
14 PyObject *f_builtins
18 PyDictObject *f_globals
1c PyDictObject *f_locals
20 PyObject **f_valuestack
24 PyObject **f_stacktop
28 PyObject *f_trace

Frame Object

S

Hooking?

All code must pass through PyEval_EvalCode or PyEval_EvalFrame

Can also hook PyObject_CallFunction or PyObject_CallMethod

S

Sounds easy
enough…

• Breaking on PyEval_EvalFrame

– Display Name of code object
• da poi(poi(poi(@esp+4)+0xc+4)+8+0x2c)+8+0xc

– Display Locals
• r@$t1=poi(@esp+4);r@$t1=poi(@$t1+0x18);r@$t2=dwo(@$t1+0x10)+1;r@

$t1=poi(@$t1+0x14);r@$t3=@$t1+@$t2*@$ptrsize;.while(@$t1<@$t3)
{r@$t2=poi(@$t1+4);r@$t1=@$t1+@$ptrsize;j(@$t2>0x14)'da@
$t2+0x14';''}

– Display Globals
• r@$t1=poi(@esp+4);r@$t1=poi(@$t1+0x1c);r@$t2=dwo(@$t1+0x10)+1;r@

$t1=poi(@$t1+0x14);r@$t3=@$t1+@$t2*@$ptrsize;.while(@$t1<@$t3)
{r@$t2=poi(@$t1+4);r@$t1=@$t1+@$ptrsize;j(@$t2>0x14)'da@
$t2+0x14';''}

• Breaking on a PyObject_Call*
– r@$t1=poi(@esp+4);r@$t2=@$t1;r@$t2=poi(@$t2+0x1c)+0x14;.printf

"PyFunction_Type:";da@$t2;r@$t3=@$t1;r@$t3=poi(@$t3+8);r@$t3=poi(@
$t3);.printf"PyCFunction_Type";da@$t3;r@$t4=@$t1;r@$t4=poi(@
$t4+8);r@$t4=poi(@$t4+0x1c)+0x14;.printf"PyMethod_Type";da@$t4

Thx WinDBG!

Breakpoints

S

Isn’t that a context switch into and out of kernel for execution of EVERY
frame?

Wait…

P

Userspace Hooking
0:000> .dvalloc 1000
Allocated 1000 bytes starting at 00430000

Let's poke around
0:000> u PyEval_EvalFrame
python24!PyEval_EvalFrame:
1e027940 83ec54 sub esp,54h
1e027943 53 push ebx
1e027944 8b1dc4871b1e mov ebx, [1e1b87c4]
1e02794a 56 push esi
0:000> a PyEval_EvalFrame
1e027940 jmp 0x430000
1e027945
0:000> u PyEval_EvalFrame
python24!PyEval_EvalFrame:
1e027940 e9bb8640e2 jmp 00430000
1e027945 1dc4871b1e sbb eax, 1e1b87c4
1e02794a 56 push esi
1e02794b 8b742460 mov esi,dword ptr [esp+60h]
1e02794f 57 push edi
1e027950 33ff xor edi,edi
1e027952 83c8ff or eax,0FFFFFFFFh
1e027955 3bf7 cmp esi,edi
0:000> a 430000
00430000 int 3
00430001 sub esp, 0x54
00430004 push ebx
00430005 mov ebx, [0x1e1b87c4]
0043000b jmp 0x1e02794a

P

PyRun_* makes injection incredibly easy. Let's take a look at
PyRun_String:

PyObject*

PyRun_String(const char* str, int start, PyObject*
globals, PyObject* locals)

{

return
run_err_node(PyParser_SimpleParseString(str,
start),

 "<string>", globals, locals, NULL);

}

Dynamic Recompilation

S

Straightforward approach
Re-declare the function and then call the original:

def old(blah, heh, ok, im, over, it):

 print "hello globals()"

original_old = old

def new(*args, **kwds):

 print repr(args), repr(kwds)

 res = original_old(*args, **kwds)

 print "result was: %s"% repr(res)

 return res

old = new

Function Hooking in Python

S

instancemethods are immutable and are bound to an instance

Just need to sneak it’s type and then clone with your new function.

instancemethod = type(Exception.__str__)
instancemethod(function, instance, class)

class obj(object):
 def method(self):
 print "yay for methods"

def new(self):
 print "okay...."

x = obj()
old = x.method.im_func
x.method = instancemethod(new, x, type(x))

Instance Method Hooking in Python

S

sys.settrace(fn)

http://docs.python.org/lib/debugger-hooks.html

def fn(*args):

 print repr(args)

sys.settrace(fn)

ihooks

http://effbot.org/librarybook/ihooks.htm

Python Supported Debugging Hooks

S

http://docs.python.org/lib/debugger-hooks.html
http://effbot.org/librarybook/ihooks.htm
http://effbot.org/librarybook/ihooks.htm

Enough Boring Stuff, Time for Demos

P

Static PYD Modifications for Pirates

Digging through the disassembly using AntiFreeze….
We notice *Globals generally contain interesting constants to modify

pirates.reputation.ReputationGlobals
Level/Experience cheats

pirates.economy.EconomyGlobals
Gold cheats

pirates.piratebase.PirateGlobals
Speed/Acceleration/Jump Height/… cheats

pirates.ship.ShipGlobals
Speed/Acceleration cheats

P

P

P

P

Caught?

P

Screenshot Contest

Disney announced a screenshot contest that coincides with Recon
Top 10 get an iPod Touch

We’ll submit our obviously cheating screenshots now…
http://apps.pirates.go.com/pirates/v3/#/community/contests.html

P

Questions?

Additionally, contact us via e-mail
aportnoy tippingpoint.com
arizvisa tippingpoint.com

Blog/Updates/etc at http://dvlabs.tippingpoint.com

P/S

http://dvlabs.tippingpoint.com/
http://dvlabs.tippingpoint.com/

