
Polymorphic Virus Analysis

Nicolas BRULEZ
Senior Virus Researcher

Websense Security Labs

IMPROVISED TALK MMMKAY?!



Case Study: W32.BAYAN

FEATURES:

● The virus is Polymorphic and very infectious.
● EPO : Entry Point Obscuring - the entry point address in the header 

is not modified, the virus injects code in the real entry point and hops 
around a few times, before it jumps to the virus entry point.

● Obfuscated layers, using junk instructions, and different decryption 
operations (simple ones tho).

● The junks code actually abuses a bug in VMWARE 5, so the virus 
actually crashed in the VM at the time of the analysis



The Encryption Layers

● The virus has Anti Vmware instructions inside his encryption layers.
VERW reg : Exception!
Does not crash on a real computer (only infection happens :-)
Tracing the layers inside a VM was a pain because of their size 
and the fact that the number of layers is actually unknown when 
you start reversing it.

● Bypassing the layers.
Look for a pattern! In most packers/viruses, there is always some 
sort of pattern you can use to identify loops boundaries.
Pattern in the layers: cmp reg32,reg32 followed by a JB
I used ollyscript to automate the layer tracing and anti VM code 
removal.



The Encryption Layers



The Encryption Layers: 
OllyScript

● We can control the debugger and automate debugging sessions
● Very useful to script unpackers

● So I wrote a dodgy Virus Tracer

Remove Anti VM
Locate end of layers
Put breakpoints and resume execution

● Stop condition
Most viruses use a call followed by a pop to calculate a delta 
address (Shellcodes and Packers use that too)
So I assumed I would eventually find one of those right after 
the decryption and it worked :-)



DEMO

Lame Polymorphic Layers Tracer



The Encryption Layers
● Process Dump:

We can dump the process when we are at the virus entry point
Static Analysis with IDA is now possible
We can also debug our new dump and start directly from the virus 
code. 
No need to go through all the layers anymore

● Delta Based Code:
Viruses usually use Delta Offsets.
Code can be executed anywhere in memory.
Harder to understand statically.



Static Analysis

● In order to read the code easily in IDA, you can load the file 
manually and substract the delta offset from the imagebase, in 
order to get a nice disassembly that you can interact with , 
without spending your time using an IDC script, structures or 
whatsoever.

● Just select Manual Load, and do something like 0xImagebase 
– 0xdelta in IDA, and the file is loaded nicely and gets a lot 
easier to analyse.

● Next slides don't use that technique, the code was loaded 
normaly. not enough time to redo them : Complain to Hugo ;-)



Get delta offset



Fix Removed Chunks



Home GetProcAddress



Anti Debugging: Exception



Anti Debugging: 
PEB.IsDebugged



Anti Debugging: MeltICE



Infection



Infection



Infection



Polymorphic Engine
 Reverse Engineering

● Polymorphic engines use:
A Pseudo Random Number Generator
Assembly instructions helping code generation (stosb etc)
Loops to generate more than one layer
A lot or pseudo randomness

● Helpful:
Intel Opcodes doc to identify which instruction is generated by the 
polymorphic engine (im getting old :-/ )
Makes things easier and quicker



Poly Generator



Poly Generator



Poly Engine



Poly Engine



Poly Engine



Poly Engine



Poly Engine



Poly Engine



Questions

Questions ?

Thank you !

(Don't forget this was an improvised talk made in 20 minutes to 
replace someone who canceled)


