
Thomas Garnier
SkyRecon Systems

Windows privilege escalation

Recon 2008 – 05/23/2008

• Introduction

• LPC interface details

• MS08-002: LSASS privilege escalation

• Demo: LSASS exploitation

• Protection against LPC privilege escalation

• ALPC architecture improvement

• MS07-066: ALPC kernel code execution

• Demo: ALPC exploitation

• Protecting the Windows kernel

• Conclusion

2

Overview

• What is the LPC interface ?

o Stands for “Local Procedure Call”

o Created for the Windows NT kernel for Windows subsystem

o Undocumented kernel component

o Provides local communication across processes

• What is the ALPC interface ?

o Stands for “Advanced Local Procedure Call”

o Added in Windows Vista (still undocumented)

o Supports old LPC functions

o Redesign of LPC architecture and features

4

Introduce LPC & ALPC

• Many SYSTEM processes provide public LPC interfaces

• Hidden in classical Windows API functions

• Local transportation for RPC and OLE

• Share mapped section across processes

o Available on almost all LPC interfaces (default)

o Improved privilege escalation reliability

o WLSI by Cesar Cerudo

• LPC is now well documented on the internet

5

Why LPC is interesting ?

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Cerrudo/bh-eu-06-Cerrudo-up.pdf

• Shares interesting points with LPC

• Design concerns

o Important new component of the Windows Vista kernel

o Compatibility with LPC interfaces

o Performance improvement

• Security concern

o Modification on remote section mapping

o Security Development Lifecycle (SDL)

o LPC interface was secure after multiple security patch

6

Why ALPC is interesting ?

7

• Classical communication architecture (Server / Client)

• LPC works with a named object named a Port

o Specified during port creation and connection

o Supports ACL restriction by security descriptor

• Incoming connection can be discarded

• Message based communication

o Queue mechanism – a HANDLE per client on server (optional)

o Multiple message types (connection, request, reply…)

8

LPC interface details

• LPC interface was secured though many patches

o MS00-003 - Spoofed LPC Port Request

o MS00-070 - Multiple LPC and LPC Port Vulnerabilities

o MS03-031 - Cumulative Patch for Microsoft SQL Server

o MS04-044 - Vulnerabilities in Windows Kernel and LSASS

o MS07-029 - Windows DNS RPC Interface

• First vulnerabilities allowed message spoofing / sniffing

• LPC design issues

9

Past LPC vulnerabilities

• There are many reasons for looking at LPC interfaces

• Understand LPC design

• Possible restriction of public interfaces

• Block remote section mapping

• Privilege escalation techniques

o Understand basics

o Think about new protection layers against it

10

LPC research

11

• The Local Security Authority Subsystem Service (LSASS)
provides services for local and domain users

o Critical system component

o Handles user authentication (access to SAM database), user and

group privileges, password policies …

• lsasrv.dll manages "\LsaAuthenticationPort" port

o Public port available with a guest account

o Almost all LSASS features are provided by this interface

o Implements a LPC dispatch table

12

LSASS LPC interface

13

LSASS dispatch table

• The LpcInitContext and LpcAcceptContext functions have
their own remote buffer system

• The LsapCaptureBuffers function captures buffer list

• The MapTokenBuffer function mirrors remote data

• The LsapUncaptureBuffers function liberates allocated
buffers

• A vulnerability exists in the way unintialized resources are
liberated in the LpcInitContext function

14

LSASS - Remote buffer system

15

LSASS - SecBufferDesc

Vulnerable assembly

16

• Frees a crafted chunk in a remote mapped section.

• RtlFreeHeap function algorithm (XP SP2)

o Verifies chunk integrity (Cookie / Flags / Alignment)

o Looks at previous and next chunk for coalescing

o It goes in lookaside table if:

» Lookaside list support is enabled

» Size < 1024 bytes

» Lookaside entry < 3 entries.

• Client process changes lookaside next entry pointer

• Next allocation of the size returns a custom pointer

17

RtlFreeHeap exploitation

• Bruteforce heap cookie is possible on a static address
o Cookie verification algorithm:

((ChunkAddr >> 3) ^ (ChunkCookie) ^ (HeapCookie)) == 0
o Only 256 possibilities
o An invalid cookie does not stop the process.

Bruteforce while testdata is
unchanged

18

Bypass cookie verification

• Overwrites any part of the memory from 8 bytes to 1024
bytes

• The Data Execution Prevention (DEP) activation restriction

• The LSASS LPC dispatch table contains an empty entry

• Uses pattern matching to untouch other entries

• First dword must be a zero (protects lookaside integrity)

• Specific context (message data not far)

19

Overwrite target

• Windows XP SP2, the LPC dispatch table call context:

o First argument and EDI register point to the message

o 0x18 first bytes of this buffer are not fully controlled

• Context register can change between module versions
(service pack, language pack)

• Getting stack control with ntdll.dll assembly

• Deactivate DEP protection

• Jump in remote mapped section

20

Control flow redirection

21

22

• Improves privilege local escalation reliability

• No publicly known public interface uses it

• Used by some private kernel LPC interfaces

o \SeLsaCommandPort

o \XactSrvLpcPort

• Black list model

• Restriction based on right level (with a whitelist)

23

Restrict mapped section

• DEP protection contributes to operating system security

• In Windows Vista, kernel32.dll module has a
SetProcessDEPPolicy function

o The only argument changes DEP status (FALSE is deactivated)

o Easier exploitation (ret-to-libc)

o Microsoft considers DEP status modification as a feature

• Disable DEP deactivation is not clever

• Distinguish a legitimate deactivation

24

DEP hardening

• The RtlFreeHeap function allows exploitation

• Windows Vista improvement

o The heap chunk is xored with a random value

o On some configurations an invalid chunk stops the process

(default is 64 bit platforms)

• Many different types of protection can be created

o Disallow freeing of a buffer which failed previous attempts

o Filter returned pointer from the RtlAllocateHeap function

o Performance issues can be important

25

Userland heap security

26

• New version of the LPC interface added in Windows Vista

o The old LPC code no longer exists

o ALPC and LPC shared a same code base (code modularity)

o Supports I/O completion port (thread organization mechanism)

o Userland server message treatment improved

o Global performance improvement (asynchronous)

27

ALPC interface details

28

NtRequestPort crossref

• This new kernel component has 21 syscall functions
starting with "NtAlpc"

• Message send and receive is done by a single function
called NtAlpcSendWaitReceivePort

• Where LPC used 4 different functions

• Totally new functions

o Open sender thread / process

o Create section representation

o Security context

o Resource reserve

29

New interface functions

• The send and receive function:

NTSTATUS NTAPI NtAlpcSendWaitReceivePort(
HANDLE PortHandle,
DWORD SendFlags, // Same as connection flag
PLPC_MESSAGE SendMessage OPTIONAL,
PVOID InMessageBuffer OPTIONAL,
PLPC_MESSAGE ReceiveBuffer OPTIONAL,
PULONG ReceiveBufferSize OPTIONAL,
PVOID OutMessageBuffer OPTIONAL,
PLARGE_INTEGER Timeout OPTIONAL);

• The SendMessage and ReceiveBuffer arguments are optional
depending on if you want to send or receive or both.

• The InMessageBuffer and OutMessageBuffer refers to action
sent with a message

30

Message function

• Dynamic structure system

o Contains multiple structures

o Structures access is made though dedicated function

o Compatible across operating system versions

31

Message buffer system

Type validated

Type allocated

Dynamic data

Static structure (8 bytes) - Types

Dynamic structures

• Call NtAlpcCreatePortSection function

o Submits a section or automatic section creation

o Links the section with submitted port return and handle

• Create a message buffer

o Include ALPC_MESSAGE_FLAG_VIEW type

o Set AlpcSectionHandle field to port section handle

• Call NtAlpcCreateSectionView function

o Submit the message buffer view pointer

o Initialized data and finalize kernel objects

• Use final message buffer

32

Remote mapping steps

• ALPC remote mapping update – not default

o Appropriate server message buffer

o There is no remote mapping address returned

o A section cannot be mapped twice during the same connection

• ALPC Message buffer architecture weirdness

o Nothing indicates if remote mapping worked

o ALPC connection message buffer

o Disconnection does not unmap section (spray attack)

33

Remote mapping mitigation

34

• The resource reserve is a new feature of ALPC interface

o A message object linked with a resource reserve object

o This message object is unassociated with any process.

• New function syscall to create or destroy a resource
reserve

o NtAlpcCreateResourceReserve

o NtAlpcDeleteResourceReserve

• Guessed feature – no wild examples

35

Resource reserve

lea eax, [ebp+var_20] ; will contain kernel message pointer

push eax

push [ebp+var_30]

push [ebp+var_34] ; <== messageid

push ebx

call @AlpcpLookupMessage@16 ; retrieve our kernel message

mov [ebp+arg_8], eax

test eax, eax

jl loc_5C5A6B

; Some check which always pass

mov eax, [ebp+var_20]

mov ebx, [eax+3Ch] ; <=== no NULL check for ALPC server object

mov esi, [ebx+8] ; acces violation /!\ (control ESI value)

mov byte ptr [ebp+arg_8+3], cl

lea eax, [esi-10h]

mov [ebp+var_24], eax

push 11h

pop ecx

mov edx, eax

xor eax, eax

lock cmpxchg [edx], ecx ; temporary DWORD overwrite with 0

test eax, eax

jz short loc_5C56AA ; old value was 0 ?

mov ecx, edx

call @ExfAcquirePushLockShared@4 ; made overwritting permanent

36

Vulnerable assembly

• Kernel NULL deference

o NULL pointer is in kernel address space in a controlled process

o Userland control used data by allocate NULL page

• Possible with NtAllocateVirtualMemory function

Example:

AllocateAddr = (PVOID) sizeof(DWORD);
nStatus = NtAllocateVirtualMemory((HANDLE)-1, &AllocateAddr, 0,

&AllocateLength, MEM_RESERVE | MEM_COMMIT |
MEM_TOP_DOWN, PAGE_EXECUTE_READWRITE);

37

NULL deference exploitation

38

Targeting resource reserve

Blob type id

Blob tag

Reserved

Delete callback

Destroy callback

Blob def structure

7

‘AlRr’

…

NULL

819c97ed

Resource reserve

Unaligned delete callback: 0xed000000
ExfAcquirePushLockShared exploitation

39

40

• The next exploitation landscape

o Kernel code does not have any protection

o NULL deference is as important as an overflow (more stable)

• Kernel protection is harder

o A single mistake crashes the system

o Windows kernel was not built for third party protection

• Two basic protection approaches

o Software against common attack vector

o Hardware monitoring

41

Kernel local privilege escalation

• Look at common attack vector

• Modifies operating system behavior

• Denied NULL page allocation

o The system should not use it anyway?

o In fact the system uses it a lot

o Some packers could use it too

• Hardened kernel pool

o Major change between 2000 and XP

o Internal management structures unexported

42

Software protection

• Security by Virtualization

o Easier to describe than to create

o The more system is monitored, the more it will slow down

o The best choice needs more research

• Apply PaX KERNEXEC recipes for Windows kernel

o Separation between user mode and kernel mode address space

o Kernel safe concept not applicable for Windows

43

Hardware monitoring

44

• There are still vulnerabilities in sub-system components

o Unusual vulnerabilities

o Windows Vista improved its code base and robustness

• Windows Vista privilege escalation

o Userland components are much safer

o The Windows kernel module is more secure than others

• Serious kernel protection would need operating system
design progress

45

Conclusion

46

