
dirtbox, a x86/Windows Emulator

Georg Wicherski

Virus Analyst, Global Research and Analysis Team



Motivation & System Overview
Why not just use CWSandbox, Anubis, Norman‘s, JoeBox, …



2010-07-11 REcon 2010, Montreal

Malware Analysis Sandbox Solutions

 VMWare „Rootkits“

 CWSandbox

 JoeBox

 ThreatExpert

 zBox

 …

 Norman Sandbox

 Anubis



2010-07-11 REcon 2010, Montreal

Malware Detection Emulators (A/V)

 Most serious A/V 

solutions have one

 API level emulation

 Often pure software

emulators

 Detection by

 Unimplented APIs

 Heap Layout, SEH 

handling, …

 …



2010-07-11 REcon 2010, Montreal

Detection by API Side-Effects

 Functions containing try { in VS C++ share code

 Epilogue is always the same

 Uses sequence push ecx / ret to return to caller

 The ecx register belongs to the called function by definition, so it is

undefinde upon API return

 The ecx value can be predicted because it will point to the API‘s ret

 This breaks a lot of A/V emulators right away

 There are some funny but trivially detected workarounds

 Could be used for generic anti-emulation detection (use of undefined

registers after SEH protected API calls)

 Relies on the fact that the API‘s bytecode is not emulated



2010-07-11 REcon 2010, Montreal

System Overview or „A cat pooped into my

sandbox and now I have a dirtbox!“

 System Call Layer 

Emulation of Windows

 ntdll‘s native code is run

inside virtual CPU

 Other libraries wrap around

kernel32 which wraps

around ntdll

 Malware issuing system

calls directly supported

Ring 0

malware.exe ntdll



libcpu
Custom x86 Basic Block Level Virtualization



2010-07-11 REcon 2010, Montreal

libcpu Overview

 Software emulation of x86 bytecode is too slow

 A lot of additional code, such as ntdll & kernel32

 Existing Virtualization solutions are too powerful

 Implementing their own MMU, support for privileged

instructions

 We want instruction level introspection

 Homebrew x86 virtualization based on LDT



2010-07-11 REcon 2010, Montreal

x86 Memory Views

Virtual PhysicalLogical



2010-07-11 REcon 2010, Montreal

x86 Memory View on Current OS

Virtual PhysicalLogical



2010-07-11 REcon 2010, Montreal

x86 Segmentation

 Global Descriptor Table

 Allocated by Operating System

 Shared among processes

 Local Descriptor Table

 Has to be allocated by the OS, too

• SYS_modify_ldt

• NtSetLdtEntries

 Process specific, usually not present

 Define 2 GB guest „userland“ LDT segment



2010-07-11 REcon 2010, Montreal

Rogue Code Execution

 Basic block level execution on host CPU

 No instruction rewriting required (thanks to host MMU)

 Basic block is terminated by

 Control flow modifying instruction

 Privileged instructions

 Exception: Backward pointing jumps

 Directly copy if points into same basic block

 Enhanced loop execution speeds

 Currently no code cache, could cache

disassembly results (length of basic block)



2010-07-11 REcon 2010, Montreal

Self-Modifying Code



2010-07-11 REcon 2010, Montreal

libcpu Demo



dirtbox
Or „The System Call Implementor‘s Sysiphus Tale“



2010-07-11 REcon 2010, Montreal

Why System Call Layer Emulation

 System Calls mostly undocumented

 Wine, ReactOS, …

 We get a lot of genuine environment for free!

 There is a fixed number of system calls but an unbound

number of APIs (think third party DLLs)

 Some malware uses system calls directly anyway

 Less detectability by API side effects (because we run

original bytecode)



2010-07-11 REcon 2010, Montreal

Things for Free: PE Parsing & Loading (!)

 Process startup handled mostly by new process

 Creating process allocates new process: NtCreateProcess

 Creates „Section“ of new image & ntdll and maps into

process, this requires kernel to parse section headers

 Creates new Thread on Entry Point with APC in ntdll

 ntdll!LdrInitializeThunk will relocate images if necessary, 

resolve imports recursively, invoke TLS and DLL startup

routines and do magic (see demo).

 All we have to implement is NtCreateSection & 

NtMapViewOfSection for SEC_IMAGE → we only

need to parse PE‘s section headers!



2010-07-11 REcon 2010, Montreal

Things for free: Accurate Heap Implementation

 A lot of A/V emulators naturally come with their

own guest heap allocator implementations

 Some even do not put heap headers before blocks

 Let alone arena structures, …

 The Windows heap is implemented in ntdll

 Interfacing the kernel with NtVirtualAlloc & NtVirtualFree

 All protections like heap cookies are present

 Fingerprinting other emulators:

 Look at malloc(0)-8, look for proper block header

 Or overflow until the heap cookie and free



2010-07-11 REcon 2010, Montreal

Things for free: Proper SEH Handling

 Generate CONTEXT record from current CPU state

 Jump to ntdll!KiUserExceptionDispatcher

 ntdll will do proper SEH handling for us

 Lookup current top of SEH chain in TEB

 Walk list, invoke exception handlers with correct flags

 Checking for SafeSEH structures etc.

 Trivial detection for other emulators:

 Link with SafeSEH header

 Trigger exception with invalid handler registered

 Check in UnhandledExceptionHandler



2010-07-11 REcon 2010, Montreal

dirtbox Demo



Conclusion & Future Work
Let‘s use this for exploit development!



2010-07-11 REcon 2010, Montreal

Detecting dirtbox / Anti-Emulation

 No leaked registers in Ring 0 transition except for eax

 Need to provide proper return codes, esp. error codes

 ntdll just cares about ≥ 0xc0000000; malware might look

for specific error codes

 Side effects on buffers etc., especially in error

cases

 Fill out IN OUT PDWORD Length in case of error?

 Roll back system calls performing multiple things?

 Tradeoff between detectability and performance



2010-07-11 REcon 2010, Montreal

Future Work: Adding Tainting & SAT Checking

 Already did Proof-of-Concept based on STP

 Interleave static analysis into dynamic emulation

 Look for interesting values (e.g. reads from network, date)

 Do static forward data-flow analysis on usage

 If used in conditional jumps, identify interesting values with
a SAT Checker (there are better domain specific ways, but 
I‘m lazy)

Automatic reconstruction of network protocols (e.g. 
commands in IRC bots)

Identify specific trigger based behaviour

Identify Anti-Emulation behaviour



Questions? Thank You!

georg.wicherski@kaspersky.com

blog.oxff.net & securelist.com

mailto:georg.wicherski@kaspersky.com

