KASPLR{KY

dirtbox, a x86/Windows Emulator

Georg Wicherski
Virus Analyst, Global Research and Analysis Team

KASPERJKY3

«A!H'

Motivation & System Overview

Why not just use CWSandbox, Anubis, Norman's, JoeBokx, ...

Malware Analysis Sandbox Solutions KASPER§KY:

A File Edt View WM Team Windows Help

Ml »uDel can Baaoom

" VMWare ,Rootkits®
= CWSandbox

= JoeBox
= ThreatExpert
= 7Box

" Norman Sandbox

2010-07-11 REcon 2010, Montreal

Malware Detection Emulators (A/V)

& Apsimasg - Unregistered version

' - ¥
(4 tT Danger I

Antivirus 360

_ e
|@‘

- N

- 60: System scan
I A aut =
M spyware aukarun program that can be
B Backdoor Cfiwindows/system., . |Win32,Rbaot.Frn An IRC controlled ba
¥ Trojan autorun Infostealer .Banker .E Steals sensitive infor
L Dialer Cifiwindows/system, ., |Dialer. Xpehbam.biz_dialer A& Dialer that loads po
M Spyware autarun Spyware. KnownBadSites Uses the Windows he
B Trojan aukorun Trojan. Tooso Trojan, Tooso is a kro
£ 5

*3 Scan progress

Scanning: [mmwm] l Stop l [Remove l

Path: update.exe

Threats found: 8

o

| J“’ System Scan

Security

A
| = Privacy

| _g Update

| ‘f,j Settings

| l?n:a System Status

|I_? Help

| —C Reagistration

fa=y Get full real-time
‘]« protection

with Antivirus 360

KASPERYKY2

Most serious A/V
solutions have one

APl level emulation

Often pure software
emulators

Detection by
= Unimplented APIs

= Heap Layout, SEH
handling, ...

2010-07-11 REcon 2010, Montreal

Detection by API Side-Effects KASPERSKY3

" Functions containing try { in VS C++ share code

= Epilogue is always the same
= Uses sequence push ecx / ret toreturnto caller

= The ecx register belongs to the called function by definition, so it is
undefinde upon API return
= The ecx value can be predicted because it will point to the API's ret

" This breaks a lot of A/V emulators right away

= There are some funny but trivially detected workarounds

= Could be used for generic anti-emulation detection (use of undefined
registers after SEH protected API calls)

" Relies on the fact that the API‘s bytecode is not emulated

2010-07-11 REcon 2010, Montreal

System Overview or ,A cat pooped into my

A)PER)KYz
sandbox and now | have a dirtbox!“ KA$PERSK

" System Call Layer
Emulation of Windows

" ntdll‘'s native code is run

inside virtual CPU

= QOther libraries wrap around
kernel32 which wraps
around ntdll

" Malware issuing system
calls directly supported

i
alirtloox

Ring O

malware.exe ntdll

Illoepu

2010-07-11 REcon 2010, Montreal

PER{KY3

5‘1!|I

1

libcpu

Custom x86 Basic Block Level Virtualization

libcpu Overview KASPER§KY %

" Software emulation of x86 bytecode is too slow
= A lot of additional code, such as ntdll & kernel32

" EXisting Virtualization solutions are too powerful

= Implementing their own MMU, support for privileged
instructions

" We want instruction level introspection

> Homebrew x86 virtualization based on LDT

2010-07-11 REcon 2010, Montreal

x86 Memory Views KASPERsKv.g

Logical Virtual Physical

2010-07-11 REcon 2010, Montreal

x86 Memory View on Current OS KASPERSKY3

Logical Virtual Physical

2010-07-11 REcon 2010, Montreal

x86 Segmentation K ASPERS KV

" Global Descriptor Table
= Allocated by Operating System
= Shared among processes
" Local Descriptor Table
= Has to be allocated by the OS, too
* SYS_modify_ldt
* NtSetLdtEntries
= Process specific, usually not present

» Define 2 GB guest ,userland“ LDT segment

2010-07-11 REcon 2010, Montreal

Rogue Code Execution KASPER§KY?

® Basic block level execution on host CPU
= No instruction rewriting required (thanks to host MMU)

" Basic block is terminated by
= Control flow modifying instruction
= Privileged instructions

" Exception: Backward pointing jumps
= Directly copy if points into same basic block
= Enhanced loop execution speeds

" Currently no code cache, could cache
disassembly results (length of basic block)

2010-07-11 REcon 2010, Montreal

Self—MOdIfyIng Code KAspERS KV3

libcpu Demo KASPERYKY2

00000000
00000000
00000000
00400000
00000000
00000000
00000000
00000000
eflags: 00EOOEOO
eip: 00400000

00000000
00000000
00000000
00400000
00000000
00000000
00000000
: 01000000
eflags: 00000246
eip: 0040000b

00000000
00000000
00000000
00400000
00000000
00000000
00000000
: 01000000
eflags: 00000246
eip: 0040000b

2010-07-11 REcon 2010, Montreal

PER{KY3

5‘1!|I

1

dirtbox

Or ,The System Call Implementor‘s Sysiphus Tale*

Why System Call Layer Emulation K ASPERSKV%

" System Calls mostly undocumented
= Wine, ReactOs, ...

" We get a lot of genuine environment for free!

" There is a fixed number of system calls but an unbound
number of APIs (think third party DLLS)

" Some malware uses system calls directly anyway

" | ess detectability by API side effects (because we run
original bytecode)

2010-07-11 REcon 2010, Montreal

Things for Free: PE Parsing & Loading (!) K ASPERSKV%

" Process startup handled mostly by new process

= Creating process allocates new process: NtCreateProcess

= Creates ,Section” of new image & ntdll and maps into
process, this requires kernel to parse section headers

= Creates new Thread on Entry Point with APC in ntdll

= ntdlllLdrinitializeThunk will relocate images if necessary,
resolve imports recursively, invoke TLS and DLL startup
routines and do magic (see demo).

= All we have to implement is NtCreateSection &
NtMapViewOfSection for SEC_IMAGE — we only
need to parse PE’‘s section headers!

2010-07-11 REcon 2010, Montreal

Things for free: Accurate Heap Implementation K ASPERS KV2

" A lot of A/V emulators naturally come with their
own guest heap allocator implementations

= Some even do not put heap headers before blocks
= | et alone arena structures, ...

" The Windows heap is implemented in ntdll
= Interfacing the kernel with NtVirtualAlloc & NtVirtualFree
= All protections like heap cookies are present

" Fingerprinting other emulators:
= l[ookatmalloc (0) -8, look for proper block header

= Or overflow until the heap cookie and free

2010-07-11 REcon 2010, Montreal

Things for free: Proper SEH Handling KASPER§KY?

" Generate CONTEXT record from current CPU state

" Jump to ntdll!KiUserExceptionDispatcher

" ntdll will do proper SEH handling for us
= | ookup current top of SEH chain in TEB
= Walk list, invoke exception handlers with correct flags
= Checking for SafeSEH structures etc.

" Trivial detection for other emulators:
= Link with SafeSEH header
= Trigger exception with invalid handler registered
= Check in UnhandledExceptionHandler

2010-07-11 REcon 2010, Montreal

2010-07-11 REcon 2010, Montreal

— ‘ H '

.ﬁ“"l"l

Conclusion & Future Work

Let's use this for exploit development!

Detecting dirtbox / Anti-Emulation KASPER§KY %

" No leaked registers in Ring O transition except for eax

= Need to provide proper return codes, esp. error codes

= ntdll just cares about = 0xc0000000; malware might look
for specific error codes

" Side effects on buffers etc., especially in error

Ccases
= Fill out IN OUT PDWORD Length in case of error?

= Roll back system calls performing multiple things?

" Tradeoff between detectability and performance

2010-07-11 REcon 2010, Montreal

Future Work: Adding Tainting & SAT Checking K ASPERS KV

" Already did Proof-of-Concept based on STP

" |nterleave static analysis into dynamic emulation
= Look for interesting values (e.g. reads from network, date)
= Do static forward data-flow analysis on usage

= |f used in conditional jumps, identify interesting values with
a SAT Checker (there are better domain specific ways, but
I'm lazy)

» Automatic reconstruction of network protocols (e.g.
commands in IRC bots)

» ldentify specific trigger based behaviour
» ldentify Anti-Emulation behaviour

2010-07-11 REcon 2010, Montreal

Questions? Thank You!

georg.wicherski@kaspersky.com
blog.oxff.net & securelist.com

KASPCRIKY

mailto:georg.wicherski@kaspersky.com

