
 How to port a DOS game
to modern systems

PORT

Authors

● Unavowed
● Gynvael Coldwind

Additional help / code / art:
● j00ru, MeMeK, oshogbo, Blount, xa

What did we do

● Port Syndicate Wars
● DOS modern x86 systems→

● GNU/Linux, Windows, Mac OS X
● others with SDL/OpenAL support

● no source code

About Syndicate Wars

● DOS 3D tactical squad action game by
Bullfrog

● sequel to Syndicate

About Syndicate Wars

About Syndicate Wars

● Demo

Why?

● For fun and profit
● Did not work on DOSBox
● Inspired by the John Jordan's Frontier:

First Encounters (JJFFE) project

How we did it

● Using recompilation techniques:
1. Disassemble recompilable form→
2. Find & replace DOS-specific parts with

portable C code, using free software portable
libraries

3. Compile native executable→

Disassembling

● Executable type: 32-bit Linear Executable
 (LE) with a DOS extender (dos4gw)

● Compiled with the WATCOM C/C++
compiler
● $ strings main.exe | grep WATCOM
vWATCOM C/C++32 Run-Time system. (c)
Copyright by WATCOM International
Corp. 1988-1995. All rights reserved.

● No applicable disassembler
● We created our own: swdisasm

Disassembling - LE

● 16-bit loader (that called dos4gw.exe)
● 32-bit application code (loaded by

dos4gw.exe)
● Sections (called objects)
● Relocations

ledisasm swdisasm→

● Goal:
● all static addressing labels→
● code and data separation
● compilable output

● Three attempts:
● ledisasm v1 (C)
● tracing ledisasm (Python)
● swdisasm (C++)

ledisasm swdisasm→

ledisasm v1:
● ndisasm engine
● multiple linear passes

● detecting functions
● detecting padding
● detecting “vtables” (?)

● output: nasm

ledisasm swdisasm→

ledisasm v1 problems:
● mixed consts/valid addresses
● alignment problems
● didn't detect all “labels”
● reasons:

● linear passes
● insufficient use of relocs

ledisasm swdisasm→

swdisasm:
● tracing disassembler
● prototype in Python (slow)
● using binutils instead of ndisasm
● region map

● 1 region per section at start, subdivided into
smaller regions with assigned types
(code/data/vtable)

● label list

ledisasm swdisasm→

swdisasm:
● how does it work:

● has a trace address queue
● add OEP to the queue
● trace through the queue until empty

– adds new addresses to the queue while tracing
– subdivides regions

● trace through the reloc targets
● add labels for data relocs

ledisasm swdisasm→

swdisasm problems:
● padding is ignored data arrays in code →

sections are lost
● a few unusual cases in the source

executable
● workaround: assign 14 regions manually

ledisasm swdisasm→

swdisasm summary:
● ~2 seconds to disassemble a 1.7MB exec
$ time ./swdisasm main.exe > swars.S
Tracing code directly accessible from the
entry point...
Tracing text relocs for vtables...
Warning: Reloc pointing to unmapped memory
at 0x140096.
Tracing remaining relocs for functions and
data...
0 guess(es) to investigate.
Region count: 3954

real 0m1.755s
user 0m1.716s
sys 0m0.024s

What's left to recompile?

● add underscores on OSX/W32
#ifdef NEED_UNDERSCORE
define TRANSFORM_SYMBOLS
define EXPORT_SYMBOL(sym) _ ## sym
#endif

● call swars main from C
 // Call game main
 asm volatile ("call asm_main\n"
 : "=a" (retval) : "a" (argc), "d" (argv));

What's left to recompile?

● it works!!!
● (well, actually it just compiles/links)

What next?

● Now the game would execute and
immediately crash

● Next goal:
● finding/replacing asm code with C code/calls

to libc
● Things to look for:

● interrupts (int $0xNN, int386(), setvect()),
port accesses (in, out instructions)

● DPMI / dos4gw “API”
● statically-linked libc functions

C lib

● Manually look for functions:
● Find a function using interrupts
● Easy picks: file operations
● Compare to Open WATCOM source
● Look at nearby code for other likely libc

functions
● Time consuming!
● Did not finish (got 40% of used functions)

● Received a .map of libc in main.exe from
an IDA user (thank you :)

Replacing code: asm C→

● Incompatible calling conventions
● x86 cdecl: arguments pushed on stack
● “watcall”: passing in registers:

● eax, edx, ebx, ecx, rest pushed on stack
● but cdecl for vararg functions

● Different registers preserved

mkwrappers

● mkwrappers: asm C ABI wrapper →
generation in python

● input: configuration file, parameters
● e.g. wrappers_libc.conf
name type args
rename w ss
rmdir w s
setbuf w pp
sprintf v psv
srand w x
sscanf v ssv

mkwrappers

● configuration file syntax
type is one of:
w - watcom: args passed in
eax, edx, ebx, ecx
c - cdecl
v – vararg
#
args is a sequence of zero or more of:
i – int
x - int (displayed in hex)
p - void * (general pointer)
s - char *
c – char
v - ...
l - va_list

mkwrappers

● Output: wrappers in asm:
.global ac_rename
ac_rename: /* w ss */
push %ecx
push %edx

push %edx
push %eax

call _rename
add $0x8,%esp

pop %edx
pop %ecx
ret

mkwrappers

● Output: wrappers in asm (debug):
.global ac_rename
ac_rename: /* w ss */

push %ecx
push %edx
push %edx
push %eax
push %edx
push %eax
push $0f
call _printf
add $0xc, %esp
call _rename
add $0x8,%esp
pop %edx
pop %ecx
ret

.data
0: .string "rename (\"%s\", \"%s\")\n"

.text

mkwrappers

mkwrappers

● Output: wrappers in asm (vararg):
.global ac_printf
ac_printf: /* v sv */

push %ebp
mov %esp,%ebp
push %ecx
push %edx
lea 0xc(%ebp),%eax
push %eax
push 0x8(%ebp)
call _vprintf <------------
add $0x8,%esp

pop %edx
pop %ecx
leave
ret

mkwrappers

● Function renames (strcasecmp vs
stricmp)

● Additional parameters:
● Underscores in symbols
● Call stack alignment

 Replacing libc calls

● We now had mkwrappers and the libc
symbol map

● We made substitutions:
s/_printf/ac_printf/g

 Replacing libc calls

● Game started working!

(as in: displaying debug output before crashing hard)

Approach to replacing
game code

● Having found DOS-specific functions, we:
● Identified purpose using DPMI spec/Ralf

Brown's interrupt list
● Noted what data they touch
● Looked for other functions touching it

● After finding interesting functions:
● Manually translated functions into C
● Got an understanding of how a subsystem

works
● Wrote replacements

Replacing unportable code

● The aim of replaced functions:
● Communication with game by reading/writing

variables according to some protocol
● In a portable manner
● Call free software portable libraries for video,

audio, keyboard and mouse input

Things replaced

● Low level DOS/hardware functions
● Video code
● Audio
● Mouse and keyboard input
● Event loops

Low level DOS/hardware

● Path handling
● Case-insensitive file names on case-sensitive

file systems
● Support for per-user profiles
● Date and time (gettime/getdate), file

handling (sopen, setmode)
● Timing

● 8254 Programmable Interrupt Timer (PIT)
used in intro playback

Video

● Game uses 3D software rendering
● Originally implemented using VESA
● 8-bit palette mode
● Needed to set video mode and provide a

framebuffer
● Reimplemented with SDL

Video

Video

Input

● Also SDL-based replacements
● Keyboard

● Keyboard controller interrupt handler
● Needed to fill key-event ring buffer and set

key state table
● Talking with 8041/8042

● Mouse
● Mouse interrupt handler (with “Mickeys”)
● Set location, motion and button state

variables according to a locking protocol

Audio

● Originally statically-linked Miles Sound
System library

● Pluggable drivers
● Analysed top-down, not bottom-up

● Found getenv(“AIL_DEBUG”) which controlled
debug output

● Found newer headers for this library
● Used the two to identify functions and data

structures

Audio

● Originally samples polled by sound card
interrupts

● Reimplemented using OpenAL
● CDDA music Ogg/Vorbis with libvorbis, →

needs to be ripped and encoded

Event loops

● riginally sound/input updates triggered
asynchronously – no longer an option

● Needed to periodically call
game_update() to flip frames / poll
input / push audio

● 4 “main loops” in the game, depending
on mode:
● intro, menu gui, mission display, paused

mission gui
● Easy to find: game would freeze!

OS X issues

● 16-byte call stack alignment
● Ancient version of GNU as in XCode

● No support for .global, .string, .fill, C-style
escapes and instruction syntax differences

● Bug which miscalculated loop* instruction
target relative addresses

● Workaround:
● Add stack alignment to mkwrappers
● asfilter script in python implementing missing

features and replacing loops with sub/jmp

Success

Release

● Wrote installers:
● bash script with cdparanoia for the UNIX-like
● Nullsoft with AKRIP for Windows (by j00ru)
● bash script for making Mac OS bundles

● Port released 5 years since inception
● Available at http://swars.vexillium.org/

Post-release

● Bug reports:
● Missing bounds checking on paths, overflow

after 100 bytes
● Things left to do:

● Network multiplayer support
● Joystick/game controller support

Conclusion

● Final code size:
● asm: 380 kLOC
● portable C: 2.5 kLOC

● Time to completion: 5 years
● (of which a few months of real work)

● Countless nights spent debugging
● A cool working game!

Questions ?
Contact

● http://swars.vexillium.org

● http://unavowed.vexillium.org

● http://gynvael.coldwind.pl

● http://vexillium.org

