3 AR
T
4. %
ok
: !

Applying Taint Analysis and Theorem
Proving to Exploit Development

Me

* Security Researcher with Immunity Inc
* Background in verification/program analysis

* Hobbies include watching the sec industry

reinvent 30 year old academic research...
badly :P

sean@immunityinc.com http://twitter.com/seanhn

Topics to be Covered

Static and dynamic analysis tradeoffs
Dataflow and taint analysis
Intermediate Representations of ASM

Building logical formulae from execution
traces

Solving the above formulae for useful results

Applying all of the above to RE and Exploit
development

y A &, J
3 v 7

b -
)+ .-]
4 . ’/.‘ -

. s
' gt
- — 4
o g
] \ .
.

Introduction & Motivation

Exploit development

* Exploit dev seems to involves two primary
talents (+practice/knowledge)
— Creativity/Being a devious bastard

— Tenacity/Painstaking reverse engineering and
debugging

e Success at the former?
— Innate ability?
e Success at the latter?
— Motivation? Tool support?

Vulnerability -> Exploit

Our workflow primarily depends on how we
have found the bug

Fuzzing

Source code/Binary auditing

Reversing a patch

‘Reversing’ a public bug announcement

Where is Your Time Actually Spent?

Fuzzing — The Rollercoaster of Fail

Yay, | found a bug!

Fuzzing — The Rollercoaster of Fail

Um, hang on... wtf just happened?

Fuzzing — The Rollercoaster of Fail

Why did the crash occur?
Where did the data involved come from?

Is the data attacker influencable?
What conditions are imposed on it?

Exactly what computations have been performed
on the data?

Where is the rest of the attacker controllable
data?

Rinse/Repeat for all interesting data

Are other bug finding methods any
better?

 How do | reach the vulnerable function/path?
* What conditions does input have to meet?

e What the hell does ObfuscatedFunctionXYZ

even do to my data?

— Unintentional and intentional arithmetic
obfuscation is common and oftentimes
automatically reversible

— Even basic data copying can make your day
miserable if done frequently

A General RE Problem

* Can variable X have value Y after a given
instruction sequence?

— What input value(s) cause this to occur

708FC8C8 xp sp3 asycfilt.dll::sub 708FC8C8
708FC959 mov eax, ebx

708FC95B neg eax

708FC95D sbb eax, eax

7T08FCO5F and eax, ecx

708FC961 mov ds: [edx],

708FC963 Jjmp byte

708FC8CS8 xp sp3 asycfilt.dll::sub 708FC8C8
7T08FC9677 cmp ds: [edx], O
7T08FC96A Jz byte c¢cs:loc

708F92D7
708F95E1
708F95E4
708F95E7
708F95E9
708F95EC
708F95F2
708F95F5
708F95F8
708F95FE
708F9600
708F9603
708F9606
708F960A
708F960C
708F9612
708F9615
708F9618
708F961A
708F961D
708F9620
708F9623
708F9626
708F9629
708F962C
708F962F
708F9632

asycfilt.dll::sub_708F92D7

mov
mov
add
movsx
imul
mov
movsx
imul
sub
mov
mov
movsx
mov
imul
add
mov
add
sub
shl
shl
mov
lea
mov
mov
mov
sub

ebx, ds:[edi+0x18]
edx, ds:[edi+8]
edx, ebx

edx, word dx

edx, edx, 0x1151
ss: [ebptarg 0], edx
ebx, word bx

ebx, ebx, 0x3B21
edx, ebx

ebx, ds:[edi+0x10]
ss: [ebptvar 4], edx
edx, word ds:[edi+8]
edi, ds:[edi]

edx, edx, 0x187E
edx, ss:[ebpt+arg 0]
ss: [ebptarg 0], ebx
ebx, edi

edi, ss:[ebptarg 0]
ebx, byte 13

edi, byte 13

ss: [ebp+var C], edi
edi, ds:[ebx+edx]
ss: [ebpt+var 1C], edi
edi, ss:[ebpt+var 4]
ss: [ebptarg 4], ebx
ebx, edx

T08F92D7

jE] Sear

yC...

708F938E
708F9392
708F9399
708F939D
708F93A1
708F93A4
T08F93A7
708F93AD
708F93E0
708F93E6
708F93B8
708F93BA
708F93ED
708F93C0
708F93C6
708F93C9
708F93CC
708F93CE
708F93D2
708F93D9
708F93DC
708F93DE
708F93EL
708F93E4
708F93E7
708F93EA
708F93ED
708F93EF
708F93F2
708F93F5
708F93F8

| 708F93FA

708F93FD
708F9401
708F9408
708F940B
708F940F
708F9413
708F9416
708F9414
708F941E
708F9421
708F9425
708F942C
708F942F
708F9432
708F9435
708F9437
708F9434
708F943D
708F9440
708F9443
708F9446
708F9448
708F944C
708F9452
708F9455
708F9459
708F945F
708F9462
708F9464
708F9467
708F9464

asycfilt.dll::sub 708F92D7
novsx esi, word ss:[ebp+arg 0]
imul esi, ds:[ecx+0xC0]

novsx edx, word ss:[ebp+var_20]
imul edx, ds:[ecx+0x40]

lea edi, ds:[edx+esi]

movsx edi, word di

imul edi, edi, Ox1151

wovsx esi, word si

imul esi, esi, O0x3B2l

mov ebx, edi

sub ebx, esi

novsx esi, word dx

nov edx, ss:[ebp+var_§]

imul esi, esi, Ox187E

movsx edx, word ds:[edx]

imul edx, ds:[ecx]

add esi, edi

novsx edi, word ss:[ebpt+arg 8]
imul edi, ds:[ecx+0x80]

nov ss:[ebpt+var_4], edi

add edi, edx

sub edx, ss:[ebp+var_4]

shl edi, byte 13

shl edx, byte 13

nov ss:[ebp+var_C], edx

lea edx, ds:[edi+esi]

sub edi, esi

nov ss:[ebp+var_1C], edx

nov edx, ss:[ebpt+var C]

lea esi, ds:[edx+ebx]

sub edx, ebx

nov ss:[ebpt+var 28], edx
novsx edx, word ss:[ebptvar_l4]
imul edx, ds:[ecx+0xa0]

nov ss:[ebpt+var C], edx

novsx edx, word ss:[ebpt+var_ 2C]
imul edx, ds:[ecx+0x20]

nov ss:[ebpt+var_20], edi
movsx edi, word ss:[ebp+var_l0]
imul edi, ds:[ecx+0x60]

nov ss:[ebpt+var_24], esi
novsx esi, word ss:[ebptarg_4]
imul esi, ds:[ecx+0xE0]

lea ebx, ds:[esi+tedx]

nov 3s:[ebptarg 0], ebx

nov ebx, ss:[ebp+var_C]

add ebx, edi

nov 3s:[ebptvar_4], edi

nov ss:[ebp+var_2C], edx

nov ss:[ebpt+arg 8], ebx

lea ebx, ds:[esi+edi]

nov edi, ss:[ebp+var C]

add edx, edi

novsx edi, word ss:[ebptarg 0]
imul edi, edi, OxFFFFE333

mov ss:[ebptarg 0], edi

novsx edi, word ss:[ebptarg 8]
imul edi, edi, OxFFFFADFD

nov ss:[ebptarg_4], edx

add edx, ebx

novsx edx, word dx

mov ss:[ebptarg 8], edi

imul edx, edx, O0x254l

Il

Nuts to that!

Current tool support

Disassemblers

Debuggers

Manual static analysis platforms

Scriptable debuggers and static analysis tools
Instrumentation frameworks

Current tool support

We have many tools that provide various
levels of abstraction over a program

Deriving meaning from these abstractions is
still primarily up to the user

More abstractions == Less pain
More automation == Less pain
Less pain == 7?77

Problem statement

* Given an arbitrary point in a program and a
collection of memory locations/registers:

— Are those locations tainted by user input?
— What exact bytes of user input?
— What computations were done on these bytes?

— What conditions have been imposed on these
bytes?
— Bonus Round: Given memory location m with

value y automatically generate an input that
results in value x at location m

How does that help?

 What percentage of your exploit development
involves figuring out what the relationship
between input data and a given set of bytes
iS?
— What byte values are forbidden in my shellcode?
— What mangling is done on my input data?
— What are the bounds on this write-4 address?

— What are the bounds on X, where X is any numeric
variable

A Collection of Problems

* Where is our data coming from and what
conditions are on it?

— Dataflow analysis, building path conditions

* What input do | need for variable X to equal
value Y?
— Theorem proving (Solving for satisfiability)

— There are many similar problems we can solve by
addressing this one

Agenda

Static versus Dynamic dataflow analysis
Taint Analysis

Intermediate representations
— ASM -> Intermediate Language

Building logical formulae to represent program
fragments

Solving logical formulae

— Solving for True/False
— Solving for a satisfying input

Static vs. Dynamic Analysis

* For most program analysis problems this is our
first question

— Realistically many problems are best approached
with a combination of both

 Tradeoffs to both

e Suitability depends on the problem at hand
and the time one is willing to invest

Static Analysis

Analysing code without running

Imprecise by nature as many problems are
undecidable in the general case

— Loop/Program termination for example
‘Solving” undecidable problems involves
compromise

— Conservative analysis -> False positives

— Unsafe analysis -> False negatives

Can give much more general (in a good way)
answers than dynamic analysis

Dynamic Analysis

Analysis of an executing program

Restricted to the code that we can cause to be
executed

We can usually only ask questions regarding ‘this
current path’ rather than ‘all possible paths’

More precise by nature than static analysis but
tradeoffs still exist

— Program lag -> Is the problem you’re interested in time
sensitive

— Analysis storage -> Is the memory required by your
analysis scaling linearly with the # instructions executed?

— Generality of our results

Making a Choice

What part of your workflow do you want to
replace/assist/automate?

— Will you settle for precise/instantly usable results at
the cost of scope?

* If you're replacing the human then probably no
* If you’'re assisting the human then probably yes

— Will you settle for answers only pertaining to this
exact run or do you want generality over many/all
paths

Frameworks required versus frameworks
available

Time allocated

. - g
3 J
| S -
3 N |
. X -~ v
%
gy,
ok
.
1 Pags
.4 - .-‘ -~
) . "

Dynamic Dataflow & Taint Analysis

Tracing data and operations

* [Instrumentation
— Inserting analysis code into a running program

— Won'’t be covered because it’s really an entire other
talk. See http://www.pintool.org to get started.

e Dataflow + Taint analysis
— What information do we track/store and how do we
do it
* |nstruction semantics

— How do we express instructions in terms of their
dataflow semantics

Dynamic Dataflow Analysis

Essentially a question of expressing the dataflow
semantics of an ASM instruction on an abstract
model of a processes memory/registers

Input — An ASM instruction, a model of the
processes registers and memory

Output — An updated model reflecting the effects
of the instruction on our model

In its pure form would provide a ‘history’ for
every byte in memory in terms of all ‘parent’
bytes

Basic Dataflow Example

bx ax CX
0 3 6

¢ L

sub bx, cx

ax

| R [

==

x \
(

Taint Analysis

* DFA over all bytes in memory and all
instructions is neither necessary nor practical
* Taint analysis is a more useful form
— Tracking values under the influence of an attacker
* Our abstract model of memory/registers is

essentially two disjoint sets mapping
addresses/registers to TAINTED/UNTAINTED

Initialising the Tainted Set

Hook read/recv/recvfrom etc system calls

Alternatively (and preferably in many cases)

— Model/Hook higher level wrappers that read in
attacker data e.g. libc wrappers

Tainting at a byte level

— Every byte ‘tainted’ by user input is added to our
TAINTED set

— Why/why not bit level?

Flags and Indirect tainting (is the return value of
strlen(tainted_data) tainted?)

Propagating Taint Information

* Given an instruction i, a memory location or
register x and the set of tainted locations T

— Add x to the tainted set T iff

xei,, ANyEi

yeT)=

srcs| x|

— dsts is the set of destinations for an instruction
— srcs[x] is the set of sources affecting dst x

Propagating Taint Information

* Given an instruction i, a memory location or
register x and the set of tainted locations T

— Remove x from the tainted set T iff

yeET)=

xei,, ANyEi

srcs| x|

Adding to the Tainted Set

 We are not merely maintaining a set
e Remember the DFA example

* For every addition to this set we record a

precise representation of the arithmetic
relationship between the memory location
and its ‘parents’

Um..wait..what?

nere do dsts and srcs come from?
nere does this ‘precise arithmetic

ationship come from’?

.I 3 J
3 J
| S -
} ~ ™ |
. ‘/'.'. -
¥
b
ok
.
. Py
.4 - ." -~
) . "

ASM and Intermediate
Representations

Modelling Dataflow Semantics

 We need an exact expression of the
relationship between the sources and
destinations of every instruction

e Can’t automatically build this from parse
tables etc

e Whatto do?

— Model each and every ASM instruction (or until
we run out of energy/will to live)

Intermediate Representations

* Writing instruction set specific analysis code is a
bad idea for a number of reasons

— Implicit operations mean repetitive work and

potential inaccuracy e.g. updates to flags and other
‘side-effects’

— Rewriting analysis code for every new instruction set
doesn’t seem like fun

 We can create our IR such that it has properties
not found in the original representation
— Static single assignment form
— Functional semantics

Intermediate Representations

For example, consider this x86 instruction:

addl %eax, %ebx

One Vex IR translation for this

————— IMark (0x24F275, 7) —-——-

(
t3 = GET:I32(0) #
t2 = GET:I32(12) #
tl = Add32(t3,t2) #
PUT (0) = t1 #

code would be this:

get %eax, a 32-bit integer
get %ebx, a 32-bit integer
addl

put %eax

From the Valgrind sources VEX/pub/libvex_ir.h

Properties of a typical IR

Reduced instruction set
— Intel x86 has > 200 instructions
— REIL (Zynamics) has 17

All implicit side effects of each instruction
made explicit e.g. flag updates

One-to-many relationship between native
instructions and IR instructions

Syntactic component vs. semantic component

Syntactic component

439B1250 ieproxy.dll: :sub 439B1250
439B126C add esi, 4

439B126F jmp o}, cs:l 13 ¢

i

\ 2

439B126C00: and 4, 2147483648, tO
439B126C01: and esi, 2147483648, tl
439B126C02: add 4, esi, t2
439B126C03: and t2, 2147483648, t3
439B126C04: bsh t3, -31, SF
439B126C05: xor t0O, tl, t4
439B126C06: xor t4, 2147483648, t5
439B126C07: xor t0, t3, t6
439B126C08: and t5, te6, t7
439B126C09: bsh t7, -31, OF
439B126C0A: and t2, 4294967296, t8
439B126C0B: bsh t8, -32, CF
439B126C0C: and t2, 4294967295, t9
439B126C0OD: bisz t9, , ZF
439B126COE: str t9, , esi
439B126F00: jcc 1, , 1134236251

REIL IR ->

Semantic component

* The syntactic component makes instruction
effects explicit. We need a semantic
component to interpret these on a model of
memory/registers

* Every time a new variable is created we record
its sources, whether they are tainted and the
operation performed on these sources as an
arithmetic or logical primitive

— e.g. ASSIGN, AND, OR, NOT, ADD, SUB etc

Semantic component

VOID

x86Simulator::simMov RM(ADDRINT memW, ADDRINT memWSize, UINT32 regld,
THREADID tid, ADDRINT pc)

{

SourceInfo si;
it ('tmgr.isRegTainted(reqId, tid)) {
tmgr.unTaintMemLoc (memwW, memWSize);

re y
’

}

si.type = REGISTER LOC;
si.loc.regld = regld;

vector<SourceInfo> sources;
sources.push back(si);

TaintInfoPtr tiPtr;
try {
tiPtr = tmgr.createNewTaintInfo(sources, (unsigned)memwWSize,
DIR COPY, X ASSIGN, tid);
} catch (IgnoreRegisterException &x) {
tmgr.unTaintMemLoc (memW, memWSize);

re r
'

}
tmgr.updateTaintInfoM(memwW, tiPtr);

Analysis flow

Executing program ->
Instrumentation layer ->

Syntactic ASM transform ->

Application of IR semantics to memory model

Querying memory model| -> ?7?7?

And this is useful because?

* We can answer the first question:
— What locations are tainted by user input?
* |Info is available to answer the next three with
some processing:
— What exact bytes of user input?
— What computations were done on these bytes?

— What conditions have been imposed on these
bytes?

y A &, J
3> v e

b o= -
)/ Lo |
4 . ’/.‘ -

. .
' gt
g)
o g
) N
.

Post-Execution Processing

Building a Path Condition

A path condition is a logical representation of the
executed code (including conditionals)

Essentially a formula relating input data to live
memory locations or registers

Built from the semantic analysis of each executed
Instruction
This will express the answer to these questions:

— What exact bytes of user input?
— What computations were done on these bytes?

Building a Path Condition

[G O G| A} G

Declareid_1, id_2, ... as BitVector[8]
Declare id_0, id_3, ... as BitVector[16]

id_0, (concatid_1, id _2)) AND
id_3, (concatid_4,id_5)) AND
d

(
(
(=id_6, (concatid_7, id_8))

(=id_9, concat(id_10, id_11)) AND
(=id_9, (+id_0, id_3))

sub bx, cx

ax Cx

oo o O o

==

-

—
W bx

(=id_12, (concatid_13, id_14)) AND
(=id_12, (-id_9, id_6))

add bx, ax
sub bx, cx

Dataflow as a ‘formula’

Vv

Declareid_1, id_2, ... as BitVector[8]
Declare id_0, id_3, ... as BitVector[16]

(=id_0, concatid_1, id_2)) AND
(=id_3, concatid_4, id_5)) AND
(=id_6, concatid_7,id_8)) AND
(=id_9, concat(id_10, id _11)) AND
(=id_12, concatid_9, id_6)) AND
(=id_9, (+id_0, id_3)) AND
(=id_12, (-id_13, id_14))

Playing with Formulae

 We’ll get to solvers and how they work soon
* For now lets assume we have a black box

— INPUT: A formula with zero or more unbound
variables

— OUTPUT:

* True/False depending on whether the formula is
satisfiable

* If “True’ then an assignment to all unbound variables
that makes the formula satisfiable

What can we do with this formula?

* Answer questions on output values given we
control input values

(= id 0, XXX) AND (= id 3, 4) AND (= id 6, 8) AND
(= id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6))

* No real advantage to solving this formula with
a solver versus running the code on a CPU
though

What can we do with this formula?

* Query input values required for a given output
value

(= id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6)) AND
(= id 12, 10)

 More interesting than the previous case as we can’t
really do this without a solver of some kind

Adding Conditional Instructions

* Conditional jumps essentially introduce
inequalities into our formula

* Necessary for accurate solutions

* Simple to derive if you have an IR

— Flag modifications are explicit in our IR therefore

we can track the exact variables involved in setting
them

(For our sanity and brevity we won’t be using a full IR in the following examples)

Adding Conditional Instructions

add bx, ax

sub bx, cx
cmp bx, 10
Jg target

target:

(= id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6)) AND
(= id 12, 10) AND (> id 12, 10)

Incomplete Transition Tables

add bx, ax
sub bx, c¢x
cmp bx, 10
Jg target

mov ax, O

Jmp exit
target:

mov ax, bx
exit:

id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6)) AND
id 12, 10) AND (<= id 12, 10) AND (= id 15, 0)

id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6)) AND
id 12, 10) AND (> id 12, 10) AND (= id 15, id 12)

Incomplete Transition Tables

Essentially we have no representation of what
occurs on the untaken side of conditions

One of the main drawbacks of purely dynamic
analysis

If our appended constraints require such a
path to be taken the solver will return

‘unsatisfiable’
Solving this problem dynamically is messy

Using a Solver to Drive Execution

* So we’ve no idea what happens on the other
side of that condition....

 What if we use the following to generate an
input?

(= id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6)) AND
(= id 12, 10) AND (<= id 12, 10)

See SAGE research from Microsoft and FuzzGrind (open source)

Solving Formulae

* By creating and solving formulae we therefore
can produce answers to the following:

— Give me the input values a, b, c such that the
output variables have values x, v, z, etc.

— Give me the output values for variables x, vy, z

were | to restrict the input variables a, b, cto A, B
and C

— Give me an input that takes a different path at
condition C

e How do we solve these formulae?

Theorem Proving

Solving Formulae/Theorem Proving

* We've been glossing over some details :)
— How does one represent these formulae?

— How do you solve non-toy examples? e.g A
thousand variables and ten thousand clauses

— How do we interact with these solvers?

e But first... a brief diversion into 15t year logic :)

Propositional logic

Punctuation e.g. ()
Propositional symbols e.g. p, g, r, s etc
Connective symbolse.g. Av,—~,—

Syntactic rules e.g. a proposition or a formula
must occur on both sides of the symbol ‘v’

Axiomse.g. ¢ =@V x

Transformations rules — replacement/
detachment

Truth tables

* The interpretation of boolean symbols can be
defined via truth tables

q p
T T
T F
F F
F F

Mm - T -

Truth/Satisfiability

* |sthere an assignment to the variables to
make the following formula true (satisfiable)?

(avbv=c)n(bvc)an-c

* How did you decide?

A Basic Approach

* From a formula with N variables there are 2N
possible interpretations

* This set is recursively enumerable therefore
the solution is effectively computable

e Obvious solution? Truth tables

F:(avbv-c)n(bvc)n(—c)

The DPLL algorithm

* The previous approach is provably correct but
quite useless for real problems

* The DPLL algorithm provides the base for most
modern solvers

* Essentially a heuristic search through a
MASSIVE state space

— For details ask me later or check out the links at
the end

Um...

* Our formula is quite obviously not in
propositional logic

(= id 9, (+ id 0, id 3)) AND (= id 12, (- id 9, id 6)) AND
(= id 12, 10) AND (> id 12, 10)

* We have a propositional skeleton but the rest
will require a higher order logic

SMT Solvers

 DPLL algorithm with a theory specific solver

— e.g. the theory of linear arithmetic, theory of
arrays/lists, theory of bit-vectors
* The theory specific solver handles

conjunctions of clauses in its theory when
requested by the DPLL algorithm

* Essentially we now know that our formulae
can actually be solved given an
implementation of DPLL(T)

Analysis flow

Executing program ->

Instrumentation layer ->

Syntactic ASM transform ->

Application of IR semantics -> memory model
Querying memory model ->

SMT-LIB formula

(A=B)A(C=10)A"(D=A+C)"(E=D)

(benchmark test
:status unknown
:Togic QF_BV

:extrafuns ((a BitVec[8])(b BitVec[8])(c BitVec[8])
(d BitVec[8])(e BitVec[8]))

:assumption (= a b)
:assumption (= ¢ bv10[8])
:assumption (= d (bvadd a c))
:assumption (= e d)

:formula (= e bv20[8])
)

Solver(formula) -> satisfying
assignment

$./yices -e -smt < new.smt
sat

(= b 0b00001010)

(=10 0b11101011)
(=11 0b00011000)
(= 12 0b01011110)
(= 13 0b10001001)

® > ‘l'
N ~
’l r ~
- :' "
Rnag
R N

Exploit Development

Detecting Memory Corruption

e Other ways to do this (PageHeap etc) but
usually sufficiently imprecise to miss subtle
cases

* Directly tainted EIP

— Probably a good sign mischief is afoot

* Tainted read/write addresses
— False positives?
e Let the solver take care of that

Locating Potential Shellcode Buffers

e Can track arbitrary input and dump lists of
potential buffers at any point in programs
execution

* We also have access to the complete history of
every byte in each buffer

* Simple to find the least restricted/mangled
buffer of user controllable input

— Consider the RE effort involved in doing this
manually

Rewriting Shellcode to Undo
Mangling

* We can use a solver to ‘undo’ arithmetic
mangling quite easily

* Given shellcode S, user input X and mangling
function M we want M(X) =S

* Simple case
— A loop containing add x, 4 for all bytes x in X

— Given the constraint M(X) = S a solver will produce
(x —4) for all x in X

Exploit Generation

* A subset of exploits can be concisely
expressed by appending conditions to a

formula built as previously described and
automatically generated

* Constraining write/read/return addresses
e Constraining the shellcode

http://www.cprover.org/dissertations/thesis-Heelan.pdf

Conclusion

Summary

By tracking tainted data we can make reverse
engineering of running/crashing programs a lot
easier

Tracking tainted data is a pretty simple matter
— Instrumentation + IR + Dataflow Semantics

Post-processing of the tracked data allows us to build
formulae representing instruction semantics

Solving formulae is useful for a bunch of fun stuff :)

Annoyances

 Dynamic dataflow analysis
— Quite slow

— By its nature leaves us with an incomplete picture

* Theorem proving

— Can take several hours to terminate (assuming we can
even guarantee completeness) for certain tasks

 |nfrastructure

— Until someone releases a more complete/integrated set of
tools there’s quite a lot of setup

Future Work

* Combining dataflow analysis/theorem proving
with existing tools e.g. Immunity Debugger

* Integration with static analysis toolkits will
make for better dynamic and static analysis

— e.g. using dynamic analysis to reduce false
positives and using static analysis to optimise
dynamic tracing

* Hopefully more useful/ambitious tools in
general (See William Whistlers talk later
today)

A4

Questions

sean@immunityinc.com http://twitter.com/seanhn

Links

* http://www.unprotectedhex.com/psv

* http://www.reddit.com/r/reverseengineering

