Designing a minimal
operating system to emulate
32/64Dbits x86 code snippets,

shellcode or malware In

Bochs

Presented by:
Elias Bachaalany (@0xeb), Microsoft

Overview

* Introduction
» System overview
» System design

e Demo

Introduction

So what's this talk about?

 How to design a minimal operating system for the purpose
of debugging code snippets or malware

» Design decisions and challenges faced

Motivation

« Static analysis is great, but not all the time:
o encrypted/packed/obfuscated
o long/complex algorithms
Debugging shellcode
Debugging a selected piece of code or subroutine
Emulate an MS Windows malware from a non MS Windows
environment
Emulation should be as accurate as the real processor

Why use emulators and VMs?

Provides an environment for quick and easy
experimentation
Run code without risk of infection
Dynamic code analysis
o Unpacking
o Algorithm recovery
» Crypto algorithms
» Hashing algorithms
= efc...
Security research

Candidate emulators

To debug malware or arbitrary x86/x64 code snippets, we
need a programmable emulator with this minimal
functionality:
« Emulation control:

o Start, stop, suspend

o manage disk images
» Debug control:

o Single stepping, tracing

o register manipulation

o breakpoints: add, delete, disable

o physical memory read/write, ...

Reinventing the wheel?

There are plenty of emulators, why not choose an
existing solution?

« Emulation libraries:
o pyemu, x86emu, ida-x86emu, libemu, ...

Selecting an emulator (1)

While emulation libraries are highly programmable and
simple to use, they:

are not necessarily mature enough: wrong instruction
emulation in some cases

do not support all instructions: easily defeated If
obscure (or unsupported) instructions are used

emulation tend be slower than inside a VM

Selecting an emulator (2)

On the other hand, popular VM products are:

e mature: very accurate emulation

 fast: they employ dynamic binary translation or hardware
alded virtualization

e programmable: emulation state and debug control are

provided

 VMWare can be controlled with a gdb stub

* Bochs provides a plugin system or a command line debugger
(bochsdbg.exe)

* Eftc...

capable of full OS emulation: debug a complete operating

system and thus they support obscure instructions

System overview

System overview

This emulation system is composed of:

* A programmable emulator: Bochs, Qemu, Vmwatre, ...
 Driver program (also referred to as the host)
Prepares the disk image
Provides the minimal operating system
Communicates with the emulator
« Code to emulate
o Packed malware
o Shellcode
o Code snippets

System overview

Image creation
« PE|ELF loader

 Processor structures setup
 Physical memory content
setup

Input files
« .dll|.so file

« PE|ELFfile
« Binary | Shellcode

Emulator Imaage execution engine
1mage execution engine
* Bochs, VMWare, Qemu,

 MBR

 Kernel

 API and OS emulation

« Host/ Guest communication

etc...

* Debug control API
 Single stepping
* Bpt managment

System overview

Image creation
« Setup the processor structures

e Set up protected mode
« GDT/IDT/PTEs
« Transform the code to be emulated into a
disk image
 File loaders (PE loader, ELF loader,

etc...)

Image execution
Boot the emulator
Handle system services
Guest<->Host and Host<->Guest communication
Target OS emulation (exception handling, system

structure emulation, etc...) .

- Disk Image creation

Disk Image creation

* Image creation
—Image file loader
» Structured input: PE, ELF, ...
» Shellcode or code snippets
— OS structure preparation
» Page directory setup
* Physical memory contents

— OS file system design

* VM image file format
— Represent all needed input in a single disk image

The virtual memory manager (VMM)

* The driver program implements a virtual memory
manager class:
— The virtual memory Is set up prior to execution
— Page table entries setup is based on the input file(s)
— For example, the PE file loader will dictate the VM layout
— VM libraries are written in C++

— Each VMM operation has side effects on the physical
memory:

 Allocate virtual memory -> setup proper PTEs

— All virtual memory operation side effects are
and flushed to the disk image

The virtual memory manager

 The VMM class implements methods such as:

.
=

-
t

t
¢ O ot
i
Al
t

ot ot P
O
[

[=

e r p,
e A E:: |:_'-_ 7 |I
r (vimm page a

it O

'_..I
o
=

// Maps multiple pages
virtual vmm err t map many pages (
uintlée selector,
offs r
*start phys loc,

e t sz,
bool user phys loc) = 0;

// Maps a single page
virtual vmm err t map page (
uintlée selector,
ea t offs,
*phys location,
user phys) = 0;

The virtual memory manager

* When emulating x86, the x86_vmm class
Implements the SO It creates the
appropriate PDEs and PTEs

vmmm err t internal x86 vmm t::map page ex(
uintlé selector,
uint32 offs,
uint32 *phys location,
uint32 *ptr pde,
uint32 *ptr pte,
page dir entry 4kb t *o pde,
page_tabje entEy t *o pEe,
bool user ;hva} B B

 The VM class simply serializes what Is
needed to be written to the physical memory
when a map_page() Is requested

* All memory transactions are into the
serializer.

The VMM operation serializer

 The VMM operation serializer can be
subclassed so it flushes the side effects to a
file (in the case of disk image creation) or to
the virtual machine (during the image
execution phase for example).

class vmm serializer T
cublic:
virtual bool serialize |
const uinte64 addr,
const void *buffer,
const size t sz) = 0;
virtual Nvmm_agrializer_t{} { 1

The virtual memory manager

* Here we can see how “a change page
protection” operation serializes (or records)

what changes are needed to be applied to the
physical memory

vimm err t internal x86 vmm t
uintl6é selector,
uint32 offs,
vmm pade attr t attr)

::ch page attr(

prage table entry t *pte;
uint32 ptr pte;

if (!'ch page attr ex(selector, o
return vmm err not mapped;

serialize (ptr pte, pte, sizeof(*pte)):

return vmm err ok;

The virtual memory manager

» Since the emulation system need to support x64,
we had to implement an x64 memory manager
class

vinm err t map page ex(
uinte4d linear,
uint64 *outphys,
uint64 *phys = NULL,
bool remap = false,
pte 4kb 64 t *pte attr = NULL);

vmm err t map many padges ex(
uinte4d linear,
size t s=Z,
vnunﬁa;}ndjx_t *mdl,
bool remap = false,
uinte4 *outphysl = NULL,
uint64d *phys = NULL,
pte 4kb €64 t *pte attr = NULL);

* This class supports Page-Map Level 4 (PML4)
tables

File loaders

« The emulation system should be able to
Interpret an executable or raw instruction
Stream:

— PE files
— ELF files
— Shellcode

— Code snippets

* A PE loader is implemented to parse PE files:
— Parse the main executable
— Parse dependencies
— Resolve imports

PE loader (1)

« The PE loader class:

— Knows how to parse PE files and their dependencies:
* Import resolution
 Relocation handling
* Proper handling of forwarded API

— It needs a virtual memory manager class to map the PE

sections to the virtual memory

* Additionally, the PE loader can interpret a
configuration file so it knows how to deal with
dependencies:

— Can generate dummy DLL stubs
— MapaDLL asitis
— Handle API emulation via scripting

PE loader (2)

 The PE loader is also responsible for setting up:
'he PEB
‘he TIB

‘'he NT structures:
* NT32_RTL_USER_PROCESS_PARAMETER
« NT32 LDR_MODULE (Load and Init order)

 The PE loader also knows how to do:
— Module management:
 LoadLibrary(), GetProcAddress(), etc...
— VA to Physical conversion (and vice versa)
— efc...

PE loader — startup configuration (1)

 The PE loader reads a special file that instructs it
how to interpret modules and APl emulation

* The startup supports such directives:

o “ma
loac

0-module: path=path _to_module,
_address=[ADDR|ASLR|default]” <- Map the

MOQC

ule as it is in the VM

— “Imitate-module: path=path_to module,
load address=[ADDR|ASLR|default]” <- Generate a
dummy stub containing all the exported entries

PE loader — startup configuration (2)

 Continued....:

— “map-file: va=load address,
file=file.bin,page prot=flags” <- map a binary file to the
desired VA (load shellcode into the emulation
environment for instance)

— “‘map-mem: va=load_address, size=SZ,
page_prot=flags” <- maps uninitialized memory

These directives instruct the PE loader how to load and
map PE files and their dependencies

PE loader — modules configuration (1)

 Each module described in the startup configuration
file has its own configuration script:

— Implement certain APl emulation of the module

— Redirect certain API:
* Redirect functionality to another module
 Redirect functionality to a script

« The module configuration file contains directives

such as:

— “func: name=GetProcAddress, entry=redirModule.NewApi” <- to
redirect an API in this module to another module

— “func: name=FuncName, purge=N, retval=123" <- Generate a
dummy API stub that always returns 123 and purges N bytes from
the stack

PE loader — modules configuration (2)

 Continued:

— “func: name=FuncName, entry=ScriptFunctionName” <- to

redirect an API in this module to a function in a script file on
the host

* For example, “kernel32.py” may contain the
following:

///func: name=Beep, entry=beep, purge=8
def beep/():
paraml
param?

Emu.GetParam (1l
Emu.GetParam (2

)
)

print "I am Beep(%d, %d)\n" % (paraml, param?2)

The emulated function returns 1:
SetRegValue (1, "EAX")

value controls execution of the debugged application:
suspend execution
continue transparently

PE loader — Dummy API stub

* This dummy stub is generated due to an entry
In kernel32.py as:

“func:

name=GetProcessAffinityMask,

purge=12, retval=0"

The stub calls a dummy entry in the kernel <-
this makes it easy to break on all dummy (not
overwritten API calls)

7DD63647
7DD63647

7DD6364C

7DD63651
7DD63656
7DD63656
7DD63656

kernel3Z2 GetProcessAffinityMask proc near

mowv eax, offset kernel3Z GetProcessAffinityMask
call near ptr bochsys BxUndefinedApiCall

mowv eax, 0 ; <- retwval

retn 12 ; <- purge wvalue

kernel32 GetProcessAffinityMask endp

PE loader — Script API stub

* This stub allows you to implement an API via
a script.

It uses the guest-to-host calls (explained later)
e user32.py may contain:

#///func: name=MessageBoxA, entry=messageb
1+~f mes “'aqﬁl 3 () =
paramz = Emu GetParam (2)
print " [Python] MessageBoxA() has been cs
(paramZ, Emu.GetS :E'1- ring (param2))
SetRegValue (1, "eax™)
continue execution
return 0O

:7DC53532 user32 MessageBoxA proc near

: 7DC53532 mov eax, offset user3Z2 MessageBoxA
: JDC53537 call near ptr bochsys HostCall

: 7DC3>353C retn 10h

: 7DC5>353C user3?2 MessageBoxA endp

PE loader — Forwarded API stub

* This stub allows you to redirect the
functionality of an API to another module /
API:

#///func: name=GetProcAddress, entry=bochsys.BxGetProcAddress

KERNEL32.d11:7DD63642 kernel3Z2 GetProcAddress proCc near
KERNEL3Z2.d11:7DD6e3642 jmp bochsys BxGetProcAddress
KERNEL32.d11:7DD63642 kernel3Z GetProcAddress endp

This stub redirects kernel32!GetProcAddress
to the kernel’'s GetProcAddress() <- Guest-To-
Host will take care of the emulation

Shellcode / Code snippet loader

* The shellcode / code snippet loader is very
simple:
— Read the startup configuration file and map the needed
binary images into the virtual machine

— The virtual memory manager is instructed to allocate and
map pages per the configuration file

PE loader + VMM + Disk file

This is how the system looks so far:

VMM
Allocate pages
Serialize VM
operation side effects
etc...

Loader

» Parse PE file

« Load dependencies
 Etc...

Flush VMM contents to disk

Disk image writer
Write MBR

Write the kernel
Write GDT/IDT
Flush serialized bytes
Etc....

Shellcode + VMM + Disk file

This is how the system looks so far:

VMM
Allocate pages
Serialize VM
operation side effects
etc...

Loader
 Load binary contents

Flush VMM contents to disk

Disk image writer
Write MBR

Write the kernel
Write GDT/IDT
Flush serialized bytes
Etc....

Boot Images on Intel compatible CPUs

* On Intel compatible processors, a bootable
disk image should have an MBR at the first
sector

The MBR loads a boot sector from the active
partition

The boot sector then loads the kernel and
starts the operating system

In our case, only the MBR Is used (two
sectors). It will load the kernel and the other
components

Disk Image format - Overview

« Boot code (MBR at sector zero)
« The OS image

The disk image Is composed of: =
Boot code

0S image

« GDT/IDT setup ([stream#1]

« Page directory setup

« Physical memory contents

 Meta data appended at the end of the disk :

stream #n

Meta data

Disk Image format - MBR

 The MBR occupies two sectors

 How It works and what it does Is discussed In
the “Image Execution” section

Disk iImage format — OS image (1)

 The OS image contains everything that was
serialized during the input loading time

» Everytime the PE loader maps a PE file or its
dependencies in memory, the requests are
recorded into the VMM serializer class

Disk Image format — OS image (2)

 The OS image simply contains a stream header
followed by a list of streams

— Stream header:
* number of streams
* header version
» efc...

— One or more streams of the following format:
» stream_size: the size of the stream
e stream_attributes: some attributes
» physical_memory location to load_at: where to write
« stream_bytes: the bytes to write to physical memory

Disk Image format — OS image (3)

* The driver program creates streams indirectly each
time a memory Is allocated or written to through the
VMM class

* The driver uses the VMM to allocate / setup the

IDT and GDT contents at a fixed / reserved
address (same as IDT and GDT addresses in
Windows XP)

* The driver will flush the system structures
(GDT/IDT) to the disk image into streams

Disk Image format — OS image (4)

« Additional meta-data is appended at the end of
the disk image

* The meta-data is not part of the mini-OS but is

used by the driver:

— Store cache data
— Store configuration blob
— Etc...

Image execution

Image Execution - overview

* The master boot record (MBR)
— Load the streams
—Jump to kernel

e The OS kernel

« Responsible for target OS emulation
— Exception handling / emulation

— System structure emulation (PEB, TIB structs...)
— Etc...

« Host to guest communication

« APl emulation / extension (through guest-to-host
communication)

Boot process

* Enter unreal mode
* Provide 4GB physical memory access from 16-bit real mode

Load the streams
« Verify the stream header

* Load all streams:
— GDT/IDT
— Page directory setup
— OS image stream: it is part of the streams. Entrypoint is patched-in
during the disk image creation phase
— Other streams

Switch to protected or long mode
Transfer execution to the kernel

Boot process

The boot code:
» 16-bit real mode code
» Enters unreal-mode to access memory > 1MB
Verifies the OS image format
Load OS image to physical memory
Page table entries are also loaded
Load the kernel
Jump to the kernel entry point

]
r

call clear

]
r

call load boot sector

; Show loading mess

call display loading message

; Enable
call setup unreal

; Load all =

; Load the kernel
call load kernel

; Loads the
load kernel:
[data.kernel flags]
KERNEL FLAG edBIT S MODE
] ort .64
; Start 32bit kernel
call load 3Z2bit kern
.64:
; Start 64bit kernel
call load 64bit kern

Memory layout at the kernel start (1)

The memory layout
First 1MB reserved
At SMB the PDBR (CR3)
Initial page directory setup
Uninitialized pages:
« BSS sections of modules * CR3->PDBR

Initialized pages: * PDE/PTEs
« Main program memory

o Dependencies: > 8MB + Size PTES

— Modules * Main module

— Injected binary files « Dependencies
 BSS memory
* Efc....

layout at the kernel start (2

Physical memory (0-4GB)
 MBR (identity mapped)
* Main module

* Dependencies
 Etc....

The VMM class assures proper
page table entry setup prior to
execution

The kernel does not update the
PTEs after it runs (it is done with
guest-to-host calls instead)

Virtual memory
 MBR (identity mapped)
0x401000 - END

 Main module
0x10000000 — END 1

e Module 1....
0x1A400000— END 2

e Module2....
0xE0000000 — END OS

e OS kernel

 IDT handlers...
0x8003F000 - 0x80040400

 GDTR->GDT
* IDIR->IDT

Kernel services

Setup IDTs (for exception handling)
Exception dispatcher

Dispatch TLS callbacks

Transfer execution to user code
Handle program termination

o EXit callbacks:
o TLS or DLLMain()
o Call exit script (guest-to-host)

Guest-to-Host and Host-to-Guest communication
Emulation environment
Debugging facilities

Kernel initialization - Overview

— At the time of MBR-to-kernel transfer all memory content is
set up already
— The kernel starts in Ring O
— Ring O initialization code:
« Setup RO stack space
« Build and setup IDT, GDT and TSS
Setup the Ring3 FS selector
Install the unhandled exception handler
Init FPU
Jump to Ring 3 initialization code In the kernel
— Switch to Ring3 via an IRET instruction
Ring 3 initialization code:

« Parse the input file and decide what to do
— Dispatch TLS callbacks / DLLMain()
— Or just call main program’s entrypoint
— -> Return to ExitProcess() after the target main() terminates

Kernel initialization — Interrupts (1)

— The following interrupts are set up with CPL=0
« DIVIDE BY_ ZERO (0x00): Handles division by zero
« SINGLE_STEP (0x01): Handles single stepping
INVALID OPCODE (0x06): Handles invalid opcodes exceptions
STACK_ EXCEPTION (0x0C): Handles stack exceptions
GPF (Ox0D): Handles general exception faults
FLOAT P_ERROR (0x10): Handles floating point errors

— Those interrupts are triggered by the emulator when a fault
or exception takes place

Kernel initialization — Interrupts (2)

— The kernel allows certain interrupts to be called from R3 in
order to emulate the desired operating system.

— The following interrupts are set up with CPL=3
« BREAKPOINT (0x03): Handles breakpoints. R3 instructions should
be able to issue an INT3 (OxCC or OxCD, 0x03) without getting a
GPF
 INTO (0x04): Interrupt on overflow is allowed from R3

Kernel initialization — Interrupts (3)

— All interrupt handlers share the same stub

— The stub stores the registers context into a CONTEXT
compatible structure

— Control is then passed from RO (the interrupt handler) to the
R3 exception dispatcher

— The exception dispatcher will convert *raw* exceptions into
Windows exceptions

Kernel initialization — Interrupts (4)

This is how the interrupt handler stubs look like:

Int0x00 Handler:

mowv
Jjmp

exception code, 0
RO0InterruptHandler

Int0x01 Handler:

mowv
jmp

exception code, 1
RO0InterruptHandler

Int0x03 Handler:

mowv
Jjmp

exception code, 3
RO0InterruptHandler

IntOx06 Handler:

mowv
jmp

exception code, 6
ROInterruptHandler

Int0x0C Handler:

mov
jmp

exception code, 0OCh
ROInterruptHandler

Int0x0D Handler:

mow

jmp

tion code, 0Dh
exception errno
RO0InterruptHandler

IntOx0E Handler:

mow

}__:' op
jmp

mov
jmp

exception code, OEh
exception errno
ROInterruptHandler

Int0x10 Handler:

exception code, 10h

ROInterruptHandler

Int0x04 Handler:

mov
jmp

exception code, 4
ROInterruptHandler

Kernel initialization — Interrupts (5

Save the registers

EXPORT ROInterruptHandler, 0O
.COpY regs:
; General
mov dword
mov dword
mov dword
mov dword
mov dword
mov dword
mov dword

isters

g raw _excp+raw exception context t.CONTEXT+CONTEXT.
_raw_excp+raw_exception context t.CONTEXT+CONTEXT.
g _raw_excp+raw_exception context t.CONTEXT+CONTEXT.
_raw _excp+raw exception context t.CONTEXT+CONTEXT.
_raw_excp+raw_exception context t.CONTEXT+CONTEXT.

_raw excp+raw exception context t.CONTEXT+CONTEXT.
_raw _excp+raw exception context t.CONTEXT+CONTEXT.

m

l_|l_|l_|l_|l_|l_|l_|H
tﬁll..QLQ'.DkQLQ'.DLD

; Copy page faulting address
mov eax, cr2
mov dword [g raw excp+raw exception context t.page fault addr],

; Copy debug registers
mov eax, dri
mov dword [g raw excp+raw exception context t.CONTEXT+CONTEXT.Dr0], eax

Return to ring3

.goto r3 dispatcher:

mov dword [esp+0x00], R3ExceptionDispatcher@4

iret

Kernel initialization — Interrupts (6)

The kernel will convert the raw Instructions to Windows
exceptions:

DWORD WINAPI R3ExceptionDispatcher(
struct EXCEPTION_REGISTRATION_RECORD *List)

{
switch ()

{

case ;
/l could also be EXCEPTION_INT_OVERFLOW

rec.ExceptionCode = EXCEPTION_INT_DIVIDE_BY_ZERO;
break;

case ;

rec.ExceptionCode = EXCEPTION_ILLEGAL INSTRUCTION;
break;

case :

rec.ExceptionCode = EXCEPTION_ACCESS_ VIOLATION;

rec.NumberParameters = 2;

Il page fault generate a special error code format:

I/ bit 3,2,1: (U/S)(R/W)(P)

rec.Exceptioninformation[0] = (exception_errno & 2) ? 1: 0O;

rec.Exceptioninformation[1] = page_fault_addr;

break;

Kernel initialization — Interrupts (7)

« Then the kernel will walk the SEH list and call the handlers

while (List = (struct EXCEPTION_REGISTRATION_RECORD *)-1)
{

if (List->Handler(&rec, List, &context, NULL) == ExceptionContinueExecution)

{
handled = 1;

break:

}

List = List->Prev:

}

if ("handled)
return UnhandledException();

return R3ExceptionDispatcherReturnToRO();
}

 Return back to RO so we restore context reglsters and then finally transfer back to
user mode (R3)

Kernel initialization — Syscalls

— The kernel allows system calls (from R3 to RO)
— A SYSCALL (Ox2E) entry is created in the IDT with CPL=3
— It allows system calls to the kernel from user mode

— A short list of supported system calls
 R3INVALIDATE_CACHE: Allows the user mode code to call the
prIVIIeged InStrUCtlon INVPLG tO Invalldate the TLB (translation lookaside buffer)

« R3EXCEPTIONDISPATCHERRETURNTORO: Allows the R3
exception dispatcher to resume back to RO

— System call service number Is passed via the EAX reqister:

mov eax, SYSCALL NUM
Int OX2E

Dispatching TLS callbacks (1)

* TLS callbacks if present are parsed from the PE header

 They are called before the entry point and at the exit of the
program

» TLS callbacks are dispatched within a try/except block

Dispatching TLS callbacks (2)

vold WINAPI DispatchTlsCallbacks(
LPVOID ImageBase,
PIMAGE NT HEADERS inh,
PIMAGE DATA DIRECTORY tls dir,
DWORD dwReason)

// We want to save caller's return address 1f any exception occurs,
// then perhaps exception handler wants to return to caller
g tls jump back.Eip = (DWORD) _ReturnAddress():;

// TLS present?
if |
inh->0OptionalHeader.NumberOfRvaAndSizes > IMAGE DIRECTORY ENTRY TLS

&&
tls dir->VirtualAddress != 0)

PIMAGE TLS DIRECTORY3Z tls =
(PIMAGE _TLS DIRECTORY32) ((DWORD)ImageBase + tls dir->VirtualAddress);

1f (tls-»AddressOfCallBacks != 0)

{
PIMAGE TLS CALLBACK *cb = (PIMAGE TLS CALLBACK *)tls->AddressOfCallBacks;

DWORD 1;

// Walk through TLS callbacks
for (1i=0;cb[i] != NULL;i1++)
cb[1] (ImageBase, dwReason, reserved);

Guest-to-host communication (1)

* APl emulation takes place on the host side
(outside the VM):

— API calls are intercepted in the emulator using a
control breakpoint

— The driver inspects the EAX register -> API index

— Checks If index Is registered with a script function

— Invokes the script code -> can modify the VM
registers and memory contents

— Resume the breakpoint -> resumes VM

Guest-to-host communication (2)
» Example of emulated function stubs:

kernel32!Beep:

mov eax, ; iIndex of k32!Beep
call bochsys BxHostCall

ret 8

user32!MessageBoxA:
mov eax,

call bochsys BxHostCall
retn 10h

bochsys!BxHostCall:
nop

nop
retn

Guest-to-host communication (3)

e Host receives a BP event -> checks the APl emulation
control breakpoint -> pass to script

int can_handle breakpoint(debugevent t &ev)

{

regs_t ®s = ev.regs;

If (regs.rip '= bp_hostcall.addr)
return -1; // Just ignore

// Do we know this address?

func_ctx_t *ctx = find_func_ctx(regs.rax);

if (ctx != NULL && ctx->func_type == FUNCTYPE_FWDSCRIPT)
return run_script_function(ctx->entry.c_str());

else
return -1;

}

Guest-to-host: System services (1)

« Some core operating system API are a special case of
the guest-to-host communication

* For example, a call will be intercepted by
the control breakpoint (on the host side) and then
passed to a specialized function:

— Parse parameters from the VM stack

— Use the PE / VMM module to allocate memory

— Serialize PDE/PTE allocations from the VMM class

— De-serialize the changes back to the VM physical memory
— Invalid TLB in the VM using a Host-To-Guest call

Guest-to-host: System services (2)

Il Allocates memory and also updates the emulator's page table
bool mem_alloc_live(

ulongptr_t &addr, size tsz,
vmm_page_attr _t pg_attr)
{
vmm_pg_serializer ser;
vmm_serializer_t *oldser = vmm->set_serializer(&ser);

sz = align_up(sz, X86_PAGE_SIZE);
bool ok = vmm->mem_alloc(addr, sz, pg_attr);
if (ok)
ok = upload_serialized_streams_to_emulator(&ser.get_list());

vmm->set_serializer(oldser);

return ok;

}

Host-to-guest communication

 Host needs to call inside the VM

* This Is achieved via ROP like technique:
— Push the parameters on the stack
— Save Input registers
— Pass more parameters into the registers
— Set EIP = Function to be called
— Set [ESP] = Control BP
— Resume control -> Call the guest
— Stop on Control BP
— Restore registers

Implementations

» This system has been implemented as a
debugger plugin for IDA Pro

« The emulator used was Bochs
— Open source
— Programmable

 The minimal kernel (or OS) is implemented in C anc
Assembly

* There are 32bits and 64bits versions of this mini
kernel

Practical use / demo

» Shellcode emulation
» Packed PE malware emulation
» 32/64bits code snippets emulation

Questions?

Thank you!

