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Introduction 

So what's this talk about? 

 
 

• How to design a minimal operating system for the purpose 
of debugging code snippets or malware 
 

• Design decisions and challenges faced 
 
 

  



Motivation 

• Static analysis is great, but not all the time: 
o encrypted/packed/obfuscated 

o long/complex algorithms 

• Debugging shellcode 

• Debugging a selected piece of code or subroutine 

• Emulate an MS Windows malware from a non MS Windows 
environment  

• Emulation should be as accurate as the real processor 



Why use emulators and VMs? 

• Provides an environment for quick and easy 
experimentation 

• Run code without risk of infection 

• Dynamic code analysis 

o Unpacking 

o Algorithm recovery  
 Crypto algorithms 

 Hashing algorithms 

 etc... 
• Security research 



Candidate emulators 

To debug malware or arbitrary x86/x64 code snippets, we 
need a programmable emulator with this minimal 
functionality: 
• Emulation control: 

o start, stop, suspend 

o manage disk images 

• Debug control:  
o single stepping, tracing 

o register manipulation 

o breakpoints: add, delete, disable 

o physical memory read/write, ... 
 



Reinventing the wheel? 

 
There are plenty of emulators, why not choose an 
existing solution? 

 
• Emulation libraries: 

o pyemu, x86emu, ida-x86emu, libemu, ... 
 



Selecting an emulator (1) 

While emulation libraries are highly programmable and 
simple to use, they: 
 

• are not necessarily mature enough: wrong instruction 
emulation in some cases 
 

• do not support all instructions: easily defeated if 
obscure (or unsupported) instructions are used 
 

• emulation tend be slower than inside a VM 



Selecting an emulator (2) 

On the other hand, popular VM products are: 
 

• mature: very accurate emulation 

• fast: they employ dynamic binary translation or hardware 
aided virtualization 

• programmable: emulation state and debug control are 
provided 
• VMWare can be controlled with a gdb stub 
• Bochs provides a plugin system or a command line debugger 

(bochsdbg.exe) 
• Etc… 

• capable of full OS emulation: debug a complete operating 
system and thus they support obscure instructions 



System overview 



System overview 

This emulation system is composed of: 
 
• A programmable emulator: Bochs, Qemu, Vmware, … 

• Driver program (also referred to as the host) 
• Prepares the disk image 
• Provides the minimal operating system 
• Communicates with the emulator 

• Code to emulate 

o Packed malware 

o Shellcode 

o Code snippets 



System overview 

Input files 

• .dll | .so file 

• PE | ELF file 

• Binary | Shellcode 

Image creation 

• PE | ELF loader 

• Processor structures setup 

• Physical memory content 

setup 

Image execution engine 

• MBR 

• Kernel 

• API and OS emulation 

• Host / Guest communication 

Emulator 

• Bochs, VMWare, Qemu, 

etc… 

• Debug control API 

• Single stepping 

• Bpt managment 



System overview 
Image creation 
• Setup the processor structures 

• Set up protected mode 
• GDT / IDT / PTEs 

• Transform the code to be emulated into a 
disk image 
• File loaders (PE loader, ELF loader, 

etc…) 

Image execution 
• Boot the emulator 
• Handle system services 

• Guest<->Host and Host<->Guest communication 
• Target OS emulation (exception handling, system 

structure emulation, etc…) 



Disk image creation 



Disk image creation 

• Image creation 

– Image file loader 

• Structured input: PE, ELF, … 

• Shellcode or code snippets 

– OS structure preparation 

• Page directory setup 

• Physical memory contents 

– OS file system design 

• VM image file format 

– Represent all needed input in a single disk image 

 

 

 



The virtual memory manager (VMM) 

• The driver program implements a virtual memory 
manager class: 

– The virtual memory is set up prior to execution 

– Page table entries setup is based on the input file(s) 

– For example, the PE file loader will dictate the VM layout 

– VM libraries are written in C++ 

– Each VMM operation has side effects on the physical 
memory: 

• Allocate virtual memory -> setup proper PTEs 

• … 

– All virtual memory operation side effects are serialized 
and flushed to the disk image 



The virtual memory manager 

• The VMM class implements methods such as: 



The virtual memory manager 

• When emulating x86, the x86_vmm class 
implements the map_page() so it creates the 
appropriate PDEs and PTEs 

•  
 
 
 
 

• The VM class simply serializes what is 
needed to be written to the physical memory 
when a map_page() is requested 

• All memory transactions are recorded into the 
serializer. 



The VMM operation serializer 

• The VMM operation serializer can be 
subclassed so it flushes the side effects to a 
file (in the case of disk image creation) or to 
the virtual machine (during the image 
execution phase for example). 

•  
 
 
 
 



The virtual memory manager 

• Here we can see how “a change page 
protection” operation serializes (or records) 
what changes are needed to be applied to the 
physical memory 

 
 
 
 
 



The virtual memory manager 

• Since the emulation system need to support x64, 
we had to implement an x64 memory manager 
class 

 

 

 

 

 

 

 

• This class supports Page-Map Level 4 (PML4) 
tables 
 
 
 



File loaders 

• The emulation system should be able to 
interpret an executable or raw instruction 
stream: 

– PE files 

– ELF files 

– Shellcode 

– Code snippets 

• A PE loader is implemented to parse PE files: 

– Parse the main executable 

– Parse dependencies 

– Resolve imports 

– …. 

 

 

 

 

 

 

 

 
 
 
 
 



PE loader (1) 

• The PE loader class: 

– Knows how to parse PE files and their dependencies: 

• Import resolution 

• Relocation handling 

• Proper handling of forwarded API 

– It needs a virtual memory manager class to map the PE 
sections to the virtual memory 

• Additionally, the PE loader can interpret a 
configuration file so it knows how to deal with 
dependencies: 

– Can generate dummy DLL stubs 

– Map a DLL as it is 

– Handle API emulation via scripting 



PE loader (2) 

• The PE loader is also responsible for setting up: 

– The PEB 

– The TIB 

– The NT structures: 

• NT32_RTL_USER_PROCESS_PARAMETER 

• NT32_LDR_MODULE (Load and Init order) 

• … 

 

• The PE loader also knows how to do: 

– Module management: 

• LoadLibrary(), GetProcAddress(), etc… 

– VA to Physical conversion (and vice versa) 

– etc… 



PE loader – startup configuration (1) 

• The PE loader reads a special file that instructs it 
how to interpret modules and API emulation 

 

• The startup supports such directives: 

– “map-module: path=path_to_module, 
load_address=[ADDR|ASLR|default]” <- Map the 
module as it is in the VM 

– “imitate-module: path=path_to_module, 
load_address=[ADDR|ASLR|default]” <- Generate a 
dummy stub containing all the exported entries 



PE loader – startup configuration (2) 

• Continued….: 

– “map-file: va=load_address, 
file=file.bin,page_prot=flags” <- map a binary file to the 
desired VA (load shellcode into the emulation 
environment for instance) 

– “map-mem: va=load_address, size=SZ, 
page_prot=flags” <- maps uninitialized memory 

 

 

These directives instruct the PE loader how to load and 
map PE files and their dependencies 

 



PE loader – modules configuration (1) 

• Each module described in the startup configuration 
file has its own configuration script: 

– Implement certain API emulation of the module 

– Redirect certain API: 

• Redirect functionality to another module 

• Redirect functionality to a script 

• The module configuration file contains directives 
such as: 
– “func: name=GetProcAddress, entry=redirModule.NewApi” <- to 

redirect an API in this module to another module 

– “func: name=FuncName, purge=N, retval=123” <- Generate a 
dummy API stub that always returns 123 and purges N bytes from 
the stack 



PE loader – modules configuration (2) 

• Continued: 
– “func: name=FuncName, entry=ScriptFunctionName” <- to 

redirect an API in this module to a function in a script file on 
the host 
 

• For example, “kernel32.py” may contain the 
following: 

 

 

 



PE loader – Dummy API stub 

• This dummy stub is generated due to an entry 
in kernel32.py as: 

• “func: name=GetProcessAffinityMask, 
purge=12, retval=0” 

• The stub calls a dummy entry in the kernel <- 
this makes it easy to break on all dummy (not 
overwritten API calls) 



PE loader – Script API stub 
• This stub allows you to implement an API via 

a script. 

• It uses the guest-to-host calls (explained later) 

•  user32.py may contain: 

 

 

 

 

Causing the following stub to be generated: 
 
 



PE loader – Forwarded API stub 

 

• This stub allows you to redirect the 
functionality of an API to another module / 
API: 

 
 

 

 

• This stub redirects kernel32!GetProcAddress 
to the kernel’s GetProcAddress() <- Guest-To-
Host will take care of the emulation 
 



Shellcode / Code snippet loader 

 

• The shellcode / code snippet loader is very 
simple: 
– Read the startup configuration file and map the needed 

binary images into the virtual machine 

– The virtual memory manager is instructed to allocate and 
map pages per the configuration file 

 



PE loader + VMM + Disk file 

This is how the system looks so far: 

Loader 

• Parse PE file 

• Load dependencies 

• Etc… 

VMM 

• Allocate pages 

• Serialize VM 

operation side effects 

• etc… 

Disk image writer 

• Write MBR 

• Write the kernel 

• Write GDT/IDT 

• Flush serialized bytes 

• Etc…. 

• Alloc mem 

• Write bytes 

Flush VMM contents to disk 



Shellcode + VMM + Disk file 

This is how the system looks so far: 

Loader 

• Load binary contents 

VMM 

• Allocate pages 

• Serialize VM 

operation side effects 

• etc… 

Disk image writer 

• Write MBR 

• Write the kernel 

• Write GDT/IDT 

• Flush serialized bytes 

• Etc…. 

• Alloc mem 

• Write bytes 

Flush VMM contents to disk 



Boot images on Intel compatible CPUs 

• On Intel compatible processors, a bootable 
disk image should have an MBR at the first 
sector 

• The MBR loads a boot sector from the active 
partition 

 

• The boot sector then loads the kernel and 
starts the operating system 

 

• In our case, only the MBR is used (two 
sectors). It will load the kernel and the other 
components 



Disk image format - Overview 

The disk image is composed of: 
• Boot code (MBR at sector zero) 
• The OS image 

• GDT/IDT setup 
• Page directory setup 
• Physical memory contents 

• Meta data appended at the end of the disk 



Disk image format - MBR 

• The MBR occupies two sectors 

• How it works and what it does is discussed in 
the “Image Execution” section 



Disk image format – OS image (1) 

• The OS image contains everything that was 
serialized during the input loading time 

 

 

• Everytime the PE loader maps a PE file or its 
dependencies in memory, the requests are 
recorded into the VMM serializer class 



Disk image format – OS image (2) 

• The OS image simply contains a stream header 
followed by a list of streams 

– Stream header:  

• number of streams 

• header version 

• etc… 

– One or more streams of the following format: 

• stream_size: the size of the stream 

• stream_attributes: some attributes 

• physical_memory_location_to_load_at: where to write 

• stream_bytes: the bytes to write to physical memory 

 



Disk image format – OS image (3) 

• The driver program creates streams indirectly each 
time a memory is allocated or written to through the 
VMM class 

 

• The driver uses the VMM to allocate / setup the 
IDT and GDT contents at a fixed / reserved 
address (same as IDT and GDT addresses in 
Windows XP) 

 

• The driver will flush the system structures 
(GDT/IDT) to the disk image into streams 

 



Disk image format – OS image (4) 

• Additional meta-data is appended at the end of 
the disk image 

 

• The meta-data is not part of the mini-OS but is 
used by the driver: 
– Store cache data 

– Store configuration blob 

– Etc… 



Image execution 



Image Execution - overview 

• The master boot record (MBR) 

– Load the streams 

– Jump to kernel 

 

• The OS kernel 
• Responsible for target OS emulation 

– Exception handling / emulation 

– System structure emulation (PEB, TIB structs…) 

– Etc… 

• Host to guest communication 

• API emulation / extension (through guest-to-host 
communication) 

 

 



Boot process 

• Enter unreal mode 
• Provide 4GB physical memory access from 16-bit real mode 

 

• Load the streams 
• Verify the stream header 
• Load all streams: 

– GDT/IDT 
– Page directory setup 
– OS image stream: it is part of the streams. Entrypoint is patched-in 

during the disk image creation phase 
– Other streams 

• Switch to protected or long mode 
• Transfer execution to the kernel 

 



Boot process 

The boot code: 
• 16-bit real mode code 

• Enters unreal-mode to access memory > 1MB 

• Verifies the OS image format 
• Load OS image to physical memory 
• Page table entries are also loaded 
• Load the kernel 
• Jump to the kernel entry point 



Boot process 



Memory layout at the kernel start (1) 
 

0-1MB 

• IVT 

• MBR 

• … 

 

>= 8MB 

• CR3 -> PDBR 

• PDE / PTEs 

 

> 8MB + size(PTEs) 

• Main module 

• Dependencies 

• BSS memory 

• Etc…. 

 

The memory layout 

• First 1MB reserved 

• At 8MB the PDBR (CR3) 
• Initial page directory setup 
• Uninitialized pages: 

• BSS sections of modules 

• Initialized pages:  
• Main program memory 
• Dependencies: 

– Modules 
– Injected binary files 



Memory layout at the kernel start (2) 

Physical memory (0-4GB) 

• MBR (identity mapped) 

• Main module 

• Dependencies 

• Etc…. 

 

 

 

Virtual  memory 

• MBR (identity mapped) 

0x401000 - END 

• Main module 

0x10000000 – END_1 

• Module 1…. 

0x1A400000– END_2 

• Module 2…. 

0xE0000000 – END OS 

• OS kernel 

• IDT handlers… 

0x8003F000 - 0x80040400 

• GDTR -> GDT 

• IDTR -> IDT 

• The VMM class assures proper 
page table entry setup prior to 
execution 

• The kernel does not update the 
PTEs after it runs (it is done with 
guest-to-host calls instead) 



Kernel services 

• Setup IDTs (for exception handling) 
• Exception dispatcher 
• Dispatch TLS callbacks 

• Transfer execution to user code 
• Handle program termination 

o Exit callbacks: 
o  TLS or DLLMain() 
o Call exit script (guest-to-host) 

• Guest-to-Host and Host-to-Guest communication 

• Emulation environment 
• Debugging facilities 



Kernel initialization - Overview 

– At the time of MBR-to-kernel transfer all memory content is 
set up already 

– The kernel starts in Ring 0 
– Ring 0 initialization code: 

• Setup R0 stack space 
• Build and setup IDT, GDT and TSS 
• Setup the Ring3 FS selector 
• Install the unhandled exception handler 
• Init FPU 
• Jump to Ring 3 initialization code in the kernel 

– Switch to Ring3 via an IRET instruction 

– Ring 3 initialization code: 
• Parse the input file and decide what to do 

– Dispatch TLS callbacks / DLLMain() 
– Or just call main program’s entrypoint 
– -> Return to ExitProcess() after the target main() terminates 



Kernel initialization – Interrupts (1) 

– The following interrupts are set up with CPL=0 
• DIVIDE_BY_ZERO ( 0x00): Handles division by zero 
• SINGLE_STEP (0x01): Handles single stepping 
• INVALID_OPCODE (0x06): Handles invalid opcodes exceptions 
• STACK_EXCEPTION (0x0C): Handles stack exceptions 
• GPF (0x0D): Handles general exception faults 
• FLOAT_P_ERROR (0x10): Handles floating point errors 

 
 

– Those interrupts are triggered by the emulator when a fault 
or exception takes place 
 
 



Kernel initialization – Interrupts (2) 

– The kernel allows certain interrupts to be called from R3 in 
order to emulate the desired operating system. 
 

– The following interrupts are set up with CPL=3 
• BREAKPOINT (0x03): Handles breakpoints. R3 instructions should 

be able to issue an INT3 (0xCC or 0xCD, 0x03) without getting a 
GPF 

• INTO (0x04): Interrupt on overflow is allowed from R3 
 
 



Kernel initialization – Interrupts (3) 

– All interrupt handlers share the same stub 
– The stub stores the registers context into a CONTEXT 

compatible structure 
– Control is then passed from R0 (the interrupt handler) to the 

R3 exception dispatcher 
– The exception dispatcher will convert *raw* exceptions into 

Windows exceptions 
 

 
 
 



Kernel initialization – Interrupts (4) 

• This is how the interrupt handler stubs look like: 



Kernel initialization – Interrupts (5) 

• Save the registers 

• Return to ring3 



Kernel initialization – Interrupts (6) 

DWORD WINAPI R3ExceptionDispatcher( 
  struct _EXCEPTION_REGISTRATION_RECORD *List) 
{ 
  switch ( exception_code ) 
  { 
    case INTNUM_DIVIDE_BY_ZERO: 
      // could also be EXCEPTION_INT_OVERFLOW 
      rec.ExceptionCode = EXCEPTION_INT_DIVIDE_BY_ZERO; 
      break; 
    case INTNUM_INVALID_OPCODE: 
      rec.ExceptionCode = EXCEPTION_ILLEGAL_INSTRUCTION; 
      break; 
    case INTNUM_PAGE_FAULT: 
      rec.ExceptionCode = EXCEPTION_ACCESS_VIOLATION; 
      rec.NumberParameters = 2; 
      // page fault generate a special error code format: 
      // bit 3,2,1: (U/S)(R/W)(P) 
      rec.ExceptionInformation[0] = (exception_errno & 2) ? 1 : 0; 
      rec.ExceptionInformation[1] = page_fault_addr; 
      break; 
  } 

 

The kernel will convert the raw instructions to Windows 
exceptions: 



Kernel initialization – Interrupts (7) 

 while (List != (struct _EXCEPTION_REGISTRATION_RECORD *)-1) 
  { 
    if (List->Handler(&rec, List, &context, NULL) == ExceptionContinueExecution) 

    { 
      handled = 1; 
      break; 
    } 
    List = List->Prev; 
  } 
 
  if (!handled) 
    return UnhandledException(); 
 
  return R3ExceptionDispatcherReturnToR0(); 
} 

• Then the kernel will walk the SEH list and call the handlers 

• Return back to R0 so we restore context registers and then finally transfer back to 
user mode (R3) 



Kernel initialization – Syscalls 

– The kernel allows system calls (from R3 to R0) 
– A SYSCALL (0x2E) entry is created in the IDT with CPL=3 
– It allows system calls to the kernel from user mode 

 
– A short list of supported system calls 

• R3INVALIDATE_CACHE: Allows the user mode code to call the 
privileged instruction INVPLG to invalidate the TLB (translation lookaside buffer) 

 
• R3EXCEPTIONDISPATCHERRETURNTOR0: Allows the R3 

exception dispatcher to resume back to R0 

 
– System call service number is passed via the EAX register: 

 mov eax, SYSCALL_NUM 

 int 0x2E 



Dispatching TLS callbacks (1) 

• TLS callbacks if present are parsed from the PE header 
 

• They are called before the entry point and at the exit of the 
program 
 

• TLS callbacks are dispatched within a try/except block 



Dispatching TLS callbacks (2) 



Guest-to-host communication (1) 

• API emulation takes place on the host side 
(outside the VM): 

– API calls are intercepted in the emulator using a 
control breakpoint 

– The driver inspects the EAX register -> API index 

– Checks if index is registered with a script function 

– Invokes the script code -> can modify the VM 
registers and memory contents 

– Resume the breakpoint -> resumes VM 



Guest-to-host communication (2) 

• Example of emulated function stubs: 
kernel32!Beep: 

mov   eax, 7DD6139Ah ; index of k32!Beep 

call  bochsys_BxHostCall 

ret   8 

 

user32!MessageBoxA: 

mov     eax, 7DC53532h 

call    bochsys_BxHostCall 

retn    10h 

 

bochsys!BxHostCall: 

nop 

nop ; Control breakpoint here 

nop 

retn 



Guest-to-host communication (3) 
• Host receives a BP event -> checks the API emulation 

control breakpoint -> pass to script 

int can_handle_breakpoint(debugevent_t &ev) 

{ 

  regs_t &regs = ev.regs; 

 

  if ( regs.rip != bp_hostcall.addr ) 

 return -1; // Just ignore 

 

  // Do we know this address? 

  func_ctx_t *ctx = find_func_ctx(regs.rax); 

  if ( ctx != NULL && ctx->func_type == FUNCTYPE_FWDSCRIPT ) 

    return run_script_function(ctx->entry.c_str()); 

  else 

    return -1; 

} 



Guest-to-host: System services (1) 

• Some core operating system API are a special case of 
the guest-to-host communication 

 

• For example, a VirtualAlloc() call will be intercepted by 
the control breakpoint (on the host side) and then 
passed to a specialized function: 

– Parse parameters from the VM stack 

– Use the PE / VMM module to allocate memory 

– Serialize PDE/PTE allocations from the VMM class 

– De-serialize the changes back to the VM physical memory 

– Invalid TLB in the VM using a Host-To-Guest call 



Guest-to-host: System services (2) 
 
// Allocates memory and also updates the emulator's page table 

bool mem_alloc_live( 

  ulongptr_t &addr,    size_t sz, 

  vmm_page_attr_t pg_attr) 

{ 

  vmm_pg_serializer ser; 

  vmm_serializer_t *oldser = vmm->set_serializer(&ser); 

 

  sz = align_up(sz, X86_PAGE_SIZE); 

  bool ok = vmm->mem_alloc(addr, sz, pg_attr); 

  if ( ok ) 

    ok = upload_serialized_streams_to_emulator(&ser.get_list()); 

 

  vmm->set_serializer(oldser); 

 

  return ok; 

} 



Host-to-guest communication 

• Host needs to call inside the VM 

• This is achieved via ROP like technique: 

– Push the parameters on the stack 

– Save input registers 

– Pass more parameters into the registers 

– Set EIP = Function to be called 

– Set [ESP] = Control BP 

– Resume control -> Call the guest 

– Stop on Control BP 

– Restore registers 

 

 



Implementations 

• This system has been implemented as a 
debugger plugin for IDA Pro 

• The emulator used was Bochs 
– Open source 

– Programmable 

• The minimal kernel (or OS) is implemented in C and 
Assembly 

• There are 32bits and 64bits versions of this mini 
kernel 



Practical use / demo 

• Shellcode emulation 

• Packed PE malware emulation 

• 32/64bits code snippets emulation 



Questions? 



Thank you! 


