

Designing a minimal

operating system to emulate
32/64bits x86 code snippets,

shellcode or malware in
Bochs

Presented by:
Elias Bachaalany (@0xeb), Microsoft

Overview

• Introduction

• System overview

• System design

• Demo

Introduction

So what's this talk about?

• How to design a minimal operating system for the purpose
of debugging code snippets or malware

• Design decisions and challenges faced

Motivation

• Static analysis is great, but not all the time:
o encrypted/packed/obfuscated

o long/complex algorithms

• Debugging shellcode

• Debugging a selected piece of code or subroutine

• Emulate an MS Windows malware from a non MS Windows
environment

• Emulation should be as accurate as the real processor

Why use emulators and VMs?

• Provides an environment for quick and easy
experimentation

• Run code without risk of infection

• Dynamic code analysis

o Unpacking

o Algorithm recovery
 Crypto algorithms

 Hashing algorithms

 etc...
• Security research

Candidate emulators

To debug malware or arbitrary x86/x64 code snippets, we
need a programmable emulator with this minimal
functionality:
• Emulation control:

o start, stop, suspend

o manage disk images

• Debug control:
o single stepping, tracing

o register manipulation

o breakpoints: add, delete, disable

o physical memory read/write, ...

Reinventing the wheel?

There are plenty of emulators, why not choose an
existing solution?

• Emulation libraries:

o pyemu, x86emu, ida-x86emu, libemu, ...

Selecting an emulator (1)

While emulation libraries are highly programmable and
simple to use, they:

• are not necessarily mature enough: wrong instruction
emulation in some cases

• do not support all instructions: easily defeated if
obscure (or unsupported) instructions are used

• emulation tend be slower than inside a VM

Selecting an emulator (2)

On the other hand, popular VM products are:

• mature: very accurate emulation

• fast: they employ dynamic binary translation or hardware
aided virtualization

• programmable: emulation state and debug control are
provided
• VMWare can be controlled with a gdb stub
• Bochs provides a plugin system or a command line debugger

(bochsdbg.exe)
• Etc…

• capable of full OS emulation: debug a complete operating
system and thus they support obscure instructions

System overview

System overview

This emulation system is composed of:

• A programmable emulator: Bochs, Qemu, Vmware, …

• Driver program (also referred to as the host)
• Prepares the disk image
• Provides the minimal operating system
• Communicates with the emulator

• Code to emulate

o Packed malware

o Shellcode

o Code snippets

System overview

Input files

• .dll | .so file

• PE | ELF file

• Binary | Shellcode

Image creation

• PE | ELF loader

• Processor structures setup

• Physical memory content

setup

Image execution engine

• MBR

• Kernel

• API and OS emulation

• Host / Guest communication

Emulator

• Bochs, VMWare, Qemu,

etc…

• Debug control API

• Single stepping

• Bpt managment

System overview
Image creation
• Setup the processor structures

• Set up protected mode
• GDT / IDT / PTEs

• Transform the code to be emulated into a
disk image
• File loaders (PE loader, ELF loader,

etc…)

Image execution
• Boot the emulator
• Handle system services

• Guest<->Host and Host<->Guest communication
• Target OS emulation (exception handling, system

structure emulation, etc…)

Disk image creation

Disk image creation

• Image creation

– Image file loader

• Structured input: PE, ELF, …

• Shellcode or code snippets

– OS structure preparation

• Page directory setup

• Physical memory contents

– OS file system design

• VM image file format

– Represent all needed input in a single disk image

The virtual memory manager (VMM)

• The driver program implements a virtual memory
manager class:

– The virtual memory is set up prior to execution

– Page table entries setup is based on the input file(s)

– For example, the PE file loader will dictate the VM layout

– VM libraries are written in C++

– Each VMM operation has side effects on the physical
memory:

• Allocate virtual memory -> setup proper PTEs

• …

– All virtual memory operation side effects are serialized
and flushed to the disk image

The virtual memory manager

• The VMM class implements methods such as:

The virtual memory manager

• When emulating x86, the x86_vmm class
implements the map_page() so it creates the
appropriate PDEs and PTEs

•

• The VM class simply serializes what is
needed to be written to the physical memory
when a map_page() is requested

• All memory transactions are recorded into the
serializer.

The VMM operation serializer

• The VMM operation serializer can be
subclassed so it flushes the side effects to a
file (in the case of disk image creation) or to
the virtual machine (during the image
execution phase for example).

•

The virtual memory manager

• Here we can see how “a change page
protection” operation serializes (or records)
what changes are needed to be applied to the
physical memory

The virtual memory manager

• Since the emulation system need to support x64,
we had to implement an x64 memory manager
class

• This class supports Page-Map Level 4 (PML4)
tables

File loaders

• The emulation system should be able to
interpret an executable or raw instruction
stream:

– PE files

– ELF files

– Shellcode

– Code snippets

• A PE loader is implemented to parse PE files:

– Parse the main executable

– Parse dependencies

– Resolve imports

– ….

PE loader (1)

• The PE loader class:

– Knows how to parse PE files and their dependencies:

• Import resolution

• Relocation handling

• Proper handling of forwarded API

– It needs a virtual memory manager class to map the PE
sections to the virtual memory

• Additionally, the PE loader can interpret a
configuration file so it knows how to deal with
dependencies:

– Can generate dummy DLL stubs

– Map a DLL as it is

– Handle API emulation via scripting

PE loader (2)

• The PE loader is also responsible for setting up:

– The PEB

– The TIB

– The NT structures:

• NT32_RTL_USER_PROCESS_PARAMETER

• NT32_LDR_MODULE (Load and Init order)

• …

• The PE loader also knows how to do:

– Module management:

• LoadLibrary(), GetProcAddress(), etc…

– VA to Physical conversion (and vice versa)

– etc…

PE loader – startup configuration (1)

• The PE loader reads a special file that instructs it
how to interpret modules and API emulation

• The startup supports such directives:

– “map-module: path=path_to_module,
load_address=[ADDR|ASLR|default]” <- Map the
module as it is in the VM

– “imitate-module: path=path_to_module,
load_address=[ADDR|ASLR|default]” <- Generate a
dummy stub containing all the exported entries

PE loader – startup configuration (2)

• Continued….:

– “map-file: va=load_address,
file=file.bin,page_prot=flags” <- map a binary file to the
desired VA (load shellcode into the emulation
environment for instance)

– “map-mem: va=load_address, size=SZ,
page_prot=flags” <- maps uninitialized memory

These directives instruct the PE loader how to load and
map PE files and their dependencies

PE loader – modules configuration (1)

• Each module described in the startup configuration
file has its own configuration script:

– Implement certain API emulation of the module

– Redirect certain API:

• Redirect functionality to another module

• Redirect functionality to a script

• The module configuration file contains directives
such as:
– “func: name=GetProcAddress, entry=redirModule.NewApi” <- to

redirect an API in this module to another module

– “func: name=FuncName, purge=N, retval=123” <- Generate a
dummy API stub that always returns 123 and purges N bytes from
the stack

PE loader – modules configuration (2)

• Continued:
– “func: name=FuncName, entry=ScriptFunctionName” <- to

redirect an API in this module to a function in a script file on
the host

• For example, “kernel32.py” may contain the
following:

PE loader – Dummy API stub

• This dummy stub is generated due to an entry
in kernel32.py as:

• “func: name=GetProcessAffinityMask,
purge=12, retval=0”

• The stub calls a dummy entry in the kernel <-
this makes it easy to break on all dummy (not
overwritten API calls)

PE loader – Script API stub
• This stub allows you to implement an API via

a script.

• It uses the guest-to-host calls (explained later)

• user32.py may contain:

Causing the following stub to be generated:

PE loader – Forwarded API stub

• This stub allows you to redirect the
functionality of an API to another module /
API:

• This stub redirects kernel32!GetProcAddress
to the kernel’s GetProcAddress() <- Guest-To-
Host will take care of the emulation

Shellcode / Code snippet loader

• The shellcode / code snippet loader is very
simple:
– Read the startup configuration file and map the needed

binary images into the virtual machine

– The virtual memory manager is instructed to allocate and
map pages per the configuration file

PE loader + VMM + Disk file

This is how the system looks so far:

Loader

• Parse PE file

• Load dependencies

• Etc…

VMM

• Allocate pages

• Serialize VM

operation side effects

• etc…

Disk image writer

• Write MBR

• Write the kernel

• Write GDT/IDT

• Flush serialized bytes

• Etc….

• Alloc mem

• Write bytes

Flush VMM contents to disk

Shellcode + VMM + Disk file

This is how the system looks so far:

Loader

• Load binary contents

VMM

• Allocate pages

• Serialize VM

operation side effects

• etc…

Disk image writer

• Write MBR

• Write the kernel

• Write GDT/IDT

• Flush serialized bytes

• Etc….

• Alloc mem

• Write bytes

Flush VMM contents to disk

Boot images on Intel compatible CPUs

• On Intel compatible processors, a bootable
disk image should have an MBR at the first
sector

• The MBR loads a boot sector from the active
partition

• The boot sector then loads the kernel and
starts the operating system

• In our case, only the MBR is used (two
sectors). It will load the kernel and the other
components

Disk image format - Overview

The disk image is composed of:
• Boot code (MBR at sector zero)
• The OS image

• GDT/IDT setup
• Page directory setup
• Physical memory contents

• Meta data appended at the end of the disk

Disk image format - MBR

• The MBR occupies two sectors

• How it works and what it does is discussed in
the “Image Execution” section

Disk image format – OS image (1)

• The OS image contains everything that was
serialized during the input loading time

• Everytime the PE loader maps a PE file or its
dependencies in memory, the requests are
recorded into the VMM serializer class

Disk image format – OS image (2)

• The OS image simply contains a stream header
followed by a list of streams

– Stream header:

• number of streams

• header version

• etc…

– One or more streams of the following format:

• stream_size: the size of the stream

• stream_attributes: some attributes

• physical_memory_location_to_load_at: where to write

• stream_bytes: the bytes to write to physical memory

Disk image format – OS image (3)

• The driver program creates streams indirectly each
time a memory is allocated or written to through the
VMM class

• The driver uses the VMM to allocate / setup the
IDT and GDT contents at a fixed / reserved
address (same as IDT and GDT addresses in
Windows XP)

• The driver will flush the system structures
(GDT/IDT) to the disk image into streams

Disk image format – OS image (4)

• Additional meta-data is appended at the end of
the disk image

• The meta-data is not part of the mini-OS but is
used by the driver:
– Store cache data

– Store configuration blob

– Etc…

Image execution

Image Execution - overview

• The master boot record (MBR)

– Load the streams

– Jump to kernel

• The OS kernel
• Responsible for target OS emulation

– Exception handling / emulation

– System structure emulation (PEB, TIB structs…)

– Etc…

• Host to guest communication

• API emulation / extension (through guest-to-host
communication)

Boot process

• Enter unreal mode
• Provide 4GB physical memory access from 16-bit real mode

• Load the streams
• Verify the stream header
• Load all streams:

– GDT/IDT
– Page directory setup
– OS image stream: it is part of the streams. Entrypoint is patched-in

during the disk image creation phase
– Other streams

• Switch to protected or long mode
• Transfer execution to the kernel

Boot process

The boot code:
• 16-bit real mode code

• Enters unreal-mode to access memory > 1MB

• Verifies the OS image format
• Load OS image to physical memory
• Page table entries are also loaded
• Load the kernel
• Jump to the kernel entry point

Boot process

Memory layout at the kernel start (1)

0-1MB

• IVT

• MBR

• …

>= 8MB

• CR3 -> PDBR

• PDE / PTEs

> 8MB + size(PTEs)

• Main module

• Dependencies

• BSS memory

• Etc….

The memory layout

• First 1MB reserved

• At 8MB the PDBR (CR3)
• Initial page directory setup
• Uninitialized pages:

• BSS sections of modules

• Initialized pages:
• Main program memory
• Dependencies:

– Modules
– Injected binary files

Memory layout at the kernel start (2)

Physical memory (0-4GB)

• MBR (identity mapped)

• Main module

• Dependencies

• Etc….

Virtual memory

• MBR (identity mapped)

0x401000 - END

• Main module

0x10000000 – END_1

• Module 1….

0x1A400000– END_2

• Module 2….

0xE0000000 – END OS

• OS kernel

• IDT handlers…

0x8003F000 - 0x80040400

• GDTR -> GDT

• IDTR -> IDT

• The VMM class assures proper
page table entry setup prior to
execution

• The kernel does not update the
PTEs after it runs (it is done with
guest-to-host calls instead)

Kernel services

• Setup IDTs (for exception handling)
• Exception dispatcher
• Dispatch TLS callbacks

• Transfer execution to user code
• Handle program termination

o Exit callbacks:
o TLS or DLLMain()
o Call exit script (guest-to-host)

• Guest-to-Host and Host-to-Guest communication

• Emulation environment
• Debugging facilities

Kernel initialization - Overview

– At the time of MBR-to-kernel transfer all memory content is
set up already

– The kernel starts in Ring 0
– Ring 0 initialization code:

• Setup R0 stack space
• Build and setup IDT, GDT and TSS
• Setup the Ring3 FS selector
• Install the unhandled exception handler
• Init FPU
• Jump to Ring 3 initialization code in the kernel

– Switch to Ring3 via an IRET instruction

– Ring 3 initialization code:
• Parse the input file and decide what to do

– Dispatch TLS callbacks / DLLMain()
– Or just call main program’s entrypoint
– -> Return to ExitProcess() after the target main() terminates

Kernel initialization – Interrupts (1)

– The following interrupts are set up with CPL=0
• DIVIDE_BY_ZERO (0x00): Handles division by zero
• SINGLE_STEP (0x01): Handles single stepping
• INVALID_OPCODE (0x06): Handles invalid opcodes exceptions
• STACK_EXCEPTION (0x0C): Handles stack exceptions
• GPF (0x0D): Handles general exception faults
• FLOAT_P_ERROR (0x10): Handles floating point errors

– Those interrupts are triggered by the emulator when a fault
or exception takes place

Kernel initialization – Interrupts (2)

– The kernel allows certain interrupts to be called from R3 in
order to emulate the desired operating system.

– The following interrupts are set up with CPL=3
• BREAKPOINT (0x03): Handles breakpoints. R3 instructions should

be able to issue an INT3 (0xCC or 0xCD, 0x03) without getting a
GPF

• INTO (0x04): Interrupt on overflow is allowed from R3

Kernel initialization – Interrupts (3)

– All interrupt handlers share the same stub
– The stub stores the registers context into a CONTEXT

compatible structure
– Control is then passed from R0 (the interrupt handler) to the

R3 exception dispatcher
– The exception dispatcher will convert *raw* exceptions into

Windows exceptions

Kernel initialization – Interrupts (4)

• This is how the interrupt handler stubs look like:

Kernel initialization – Interrupts (5)

• Save the registers

• Return to ring3

Kernel initialization – Interrupts (6)

DWORD WINAPI R3ExceptionDispatcher(
 struct _EXCEPTION_REGISTRATION_RECORD *List)
{
 switch (exception_code)
 {
 case INTNUM_DIVIDE_BY_ZERO:
 // could also be EXCEPTION_INT_OVERFLOW
 rec.ExceptionCode = EXCEPTION_INT_DIVIDE_BY_ZERO;
 break;
 case INTNUM_INVALID_OPCODE:
 rec.ExceptionCode = EXCEPTION_ILLEGAL_INSTRUCTION;
 break;
 case INTNUM_PAGE_FAULT:
 rec.ExceptionCode = EXCEPTION_ACCESS_VIOLATION;
 rec.NumberParameters = 2;
 // page fault generate a special error code format:
 // bit 3,2,1: (U/S)(R/W)(P)
 rec.ExceptionInformation[0] = (exception_errno & 2) ? 1 : 0;
 rec.ExceptionInformation[1] = page_fault_addr;
 break;
 }

The kernel will convert the raw instructions to Windows
exceptions:

Kernel initialization – Interrupts (7)

 while (List != (struct _EXCEPTION_REGISTRATION_RECORD *)-1)
 {
 if (List->Handler(&rec, List, &context, NULL) == ExceptionContinueExecution)

 {
 handled = 1;
 break;
 }
 List = List->Prev;
 }

 if (!handled)
 return UnhandledException();

 return R3ExceptionDispatcherReturnToR0();
}

• Then the kernel will walk the SEH list and call the handlers

• Return back to R0 so we restore context registers and then finally transfer back to
user mode (R3)

Kernel initialization – Syscalls

– The kernel allows system calls (from R3 to R0)
– A SYSCALL (0x2E) entry is created in the IDT with CPL=3
– It allows system calls to the kernel from user mode

– A short list of supported system calls

• R3INVALIDATE_CACHE: Allows the user mode code to call the
privileged instruction INVPLG to invalidate the TLB (translation lookaside buffer)

• R3EXCEPTIONDISPATCHERRETURNTOR0: Allows the R3

exception dispatcher to resume back to R0

– System call service number is passed via the EAX register:

 mov eax, SYSCALL_NUM

 int 0x2E

Dispatching TLS callbacks (1)

• TLS callbacks if present are parsed from the PE header

• They are called before the entry point and at the exit of the
program

• TLS callbacks are dispatched within a try/except block

Dispatching TLS callbacks (2)

Guest-to-host communication (1)

• API emulation takes place on the host side
(outside the VM):

– API calls are intercepted in the emulator using a
control breakpoint

– The driver inspects the EAX register -> API index

– Checks if index is registered with a script function

– Invokes the script code -> can modify the VM
registers and memory contents

– Resume the breakpoint -> resumes VM

Guest-to-host communication (2)

• Example of emulated function stubs:
kernel32!Beep:

mov eax, 7DD6139Ah ; index of k32!Beep

call bochsys_BxHostCall

ret 8

user32!MessageBoxA:

mov eax, 7DC53532h

call bochsys_BxHostCall

retn 10h

bochsys!BxHostCall:

nop

nop ; Control breakpoint here

nop

retn

Guest-to-host communication (3)
• Host receives a BP event -> checks the API emulation

control breakpoint -> pass to script

int can_handle_breakpoint(debugevent_t &ev)

{

 regs_t ®s = ev.regs;

 if (regs.rip != bp_hostcall.addr)

 return -1; // Just ignore

 // Do we know this address?

 func_ctx_t *ctx = find_func_ctx(regs.rax);

 if (ctx != NULL && ctx->func_type == FUNCTYPE_FWDSCRIPT)

 return run_script_function(ctx->entry.c_str());

 else

 return -1;

}

Guest-to-host: System services (1)

• Some core operating system API are a special case of
the guest-to-host communication

• For example, a VirtualAlloc() call will be intercepted by
the control breakpoint (on the host side) and then
passed to a specialized function:

– Parse parameters from the VM stack

– Use the PE / VMM module to allocate memory

– Serialize PDE/PTE allocations from the VMM class

– De-serialize the changes back to the VM physical memory

– Invalid TLB in the VM using a Host-To-Guest call

Guest-to-host: System services (2)

// Allocates memory and also updates the emulator's page table

bool mem_alloc_live(

 ulongptr_t &addr, size_t sz,

 vmm_page_attr_t pg_attr)

{

 vmm_pg_serializer ser;

 vmm_serializer_t *oldser = vmm->set_serializer(&ser);

 sz = align_up(sz, X86_PAGE_SIZE);

 bool ok = vmm->mem_alloc(addr, sz, pg_attr);

 if (ok)

 ok = upload_serialized_streams_to_emulator(&ser.get_list());

 vmm->set_serializer(oldser);

 return ok;

}

Host-to-guest communication

• Host needs to call inside the VM

• This is achieved via ROP like technique:

– Push the parameters on the stack

– Save input registers

– Pass more parameters into the registers

– Set EIP = Function to be called

– Set [ESP] = Control BP

– Resume control -> Call the guest

– Stop on Control BP

– Restore registers

Implementations

• This system has been implemented as a
debugger plugin for IDA Pro

• The emulator used was Bochs
– Open source

– Programmable

• The minimal kernel (or OS) is implemented in C and
Assembly

• There are 32bits and 64bits versions of this mini
kernel

Practical use / demo

• Shellcode emulation

• Packed PE malware emulation

• 32/64bits code snippets emulation

Questions?

Thank you!

