
P A G E

CORE SECURITY
Dynamic Binary Instrumentation Frameworks: I know you're
there spying on me

Francisco Falcón – Nahuel Riva
RECon 2012

June 2012

P A G E

Agenda

2

P A G E

Agenda

• Who are we?

• Motivations

• What is Dynamic Binary Instrumentation?
• What is Pin?

• How does Pin work?

• Anti-debug and Anti-VM related work

• Anti-instrumentation techniques

• Presentation of eXait

• Applications of our research

• Future work

• Contact info

3

P A G E

Who are we?

4

P A G E

Who are we?

• We are exploit writers in the Exploit Writers Team of Core
Security.

• We have discovered vulnerabilities in software of some major
companies (CA, Adobe, HP, Novell, Oracle, IBM, Google).

• We like low-level stuff, like doing kernel exploitation, assembly
programming, breaking software protections, etc.

• This is our first talk in a conference!

• We are from small towns in Argentina.

5

P A G E

Who are we?

6

Nahuel is from the World ‘s Capital City of Asado!

P A G E

Who are we?

7

Francisco is from a county that looks like the head of a man!

P A G E

Motivations for our work

8

P A G E

Motivations

• Dynamic Binary Instrumentation is becoming more popular.

• Covert debugging (Saffron - Danny Quist – BH USA 2007/Defcon 15)

• Automatic Unpacking (Piotr Bania - 2009, Ricardo J. Rodriguez - 2012)

• Shellcode detection (Sebastian Porst – Zynamics - 2010)

• Taint analysis

• Instruction tracing

• Self-modifying code analysis (Tarte Tatin Tools - Daniel Reynaud)

• Exploitation techniques mitigations (Richard Johnson – Snort 2012)

9

P A G E

Motivations

• Dynamic Binary Instrumentation is becoming more popular.

• Light and Dark side of Code Instrumentation - Dmitriy Evdokimov -

ConFidEncE 2012

• Hacking Using Dynamic Binary Instrumentation - Gal Diskin - HITB
2012 AMS

• Improving Software Security with Dynamic Binary Instrumentation -
Richard Johnson - InfoSec Southwest 2012

• Improvements in the unpacking process using DBI techniques - Ricardo
J. Rodriguez - RootedCon 2012

• Shellcode analysis using dynamic binary instrumentation - Daniel Radu
and Bruce Dang - CARO 2011

• Vulnerability Analysis and Practical Data Flow Analysis & Visualization -
Jeong Wook Oh - CanSecWest 2012

1 0

P A G E

Motivations

• If this trend continues, we think that eventually anti-
instrumentation techniques will arise.

• Apparently, there isn’t any comprehensive public
documentation on anti-instrumentation techniques.

1 1

P A G E

What is Dynamic Binary Instrumentation?

1 2

P A G E

What is Instrumentation?

It’s a technique to analyze and modify the behavior of a program
by adding code to it.

It can be done:
• At the source code level

• At the binary code level

In turn, it can be:
• Static

• Dynamic

1 3

P A G E

What is Dynamic Binary Instrumentation?

It’s a technique to analyze and modify the behavior of a binary
program by injecting arbitrary code at arbitrary places while it is
executing.

1 4

P A G E

What is Pin?

1 5

P A G E

What is Pin?

• It’s the Intel’s Dynamic Binary Instrumentation Framework.

• It works on Windows, Linux and Mac OS X.

• It works on x86, amd64, Itanium and ARM (discontinued).

• Its API allows to inject C/C++ arbitrary code.

1 6

P A G E

How does Pin work?

1 7

P A G E

How does Pin work?

•Pin is a command line tool:

• pin.bat -t pintool.dll [pintool args] -- program.exe [program
args]

• pin.bat -pid <program pid> -t pintool.dll [pintool args]

1 8

P A G E

How does Pin work?

• Pin main components:
• Pin.exe

• Pinvm.dll

• The code you write to instrument programs using the Pin API is
compiled into pintools

1 9

P A G E

How does Pin work?

• JIT compiler.
• Input: binary code

• Output: equivalent code with introspection code

• The code is generated only when it is needed

• The only code that is executed is the code generated by the JIT
compiler.

• The original code remains in memory just as a reference but it
is never executed.

2 0

P A G E

Anti-debug and Anti-VM related work

2 1

P A G E

Anti-debug and Anti-VM related work

• Anti-debug techniques papers series by Peter Ferrie
(http://pferrie.host22.com/).

• Anti-VM techniques papers by Peter Ferrie (same link as
above).

• Dan Upton – Detection and Subversion Of Virtual Machines
(http://www.cs.virginia.edu/~dsu9w/upton06detection.pdf).

2 2

http://pferrie.host22.com/
http://www.cs.virginia.edu/~dsu9w/upton06detection.pdf

P A G E

Anti-debug and Anti-VM related work

• Red pill – (Joanna Rutkowska).

• On the Cutting Edge: Thwarting Virtual Machine Detection
(Tom Liston – Ed Skoudis
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_
Skoudis.pdf).

2 3

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf
http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

P A G E

Anti-instrumentation techniques

2 4

P A G E

Anti-instrumentation techniques

• Code and data fingerprinting of pinvm.dll

• PE characteristics fingerprint

• Handles inspection

• Time detection

• Pin’s JIT compiler code fingerprint

• Real EIP value

• Misc techniques

2 5

P A G E

Anti-instrumentation techniques – Fingerprinting
pinvm.dll

• Code and data fingerprinting of pinvm.dll

• Detect by searching string patterns

• Detect by code patterns

2 6

P A G E

Fingerprinting pinvm.dll – Detect by string patterns

• Detect by string patterns

• “@CHARM-VERSION: $Id:”

• "build\\Source\\pin\\internal-include-windows-ia32\\bigarray.H“

• "LEVEL_BASE::ARRAYBASE::SetTotal“

• "Source\\pin\\base\\bigarray.cpp“

2 7

P A G E

Fingerprinting pinvm.dll – Detect by code patterns

• Detect by code patterns (pattern 1)

5418D4A6 897424 04 MOV DWORD PTR SS:[ESP+4],ESI

5418D4AA 895C24 10 MOV DWORD PTR SS:[ESP+10],EBX

5418D4AE 895424 14 MOV DWORD PTR SS:[ESP+14],EDX

5418D4B2 894C24 18 MOV DWORD PTR SS:[ESP+18],ECX

5418D4B6 894424 1C MOV DWORD PTR SS:[ESP+1C],EAX

5418D4BA 33C0 XOR EAX,EAX

5418D4BC 894424 20 MOV DWORD PTR SS:[ESP+20],EAX

5418D4C0 8C4C24 20 MOV WORD PTR SS:[ESP+20],CS

5418D4C4 894424 28 MOV DWORD PTR SS:[ESP+28],EAX

5418D4C8 8C5C24 28 MOV WORD PTR SS:[ESP+28],DS

5418D4CC 894424 24 MOV DWORD PTR SS:[ESP+24],EAX

5418D4D0 8C5424 24 MOV WORD PTR SS:[ESP+24],SS

5418D4D4 894424 2C MOV DWORD PTR SS:[ESP+2C],EAX

5418D4D8 8C4424 2C MOV WORD PTR SS:[ESP+2C],ES

5418D4DC 894424 30 MOV DWORD PTR SS:[ESP+30],EAX

5418D4E0 8C6424 30 MOV WORD PTR SS:[ESP+30],FS

5418D4E4 894424 34 MOV DWORD PTR SS:[ESP+34],EAX

5418D4E8 8C6C24 34 MOV WORD PTR SS:[ESP+34],GS

2 8

P A G E

Fingerprinting pinvm.dll – Detect by code patterns

• Detect by code patterns (pattern 2)

01750110 CD 00 INT 0

01750112 E9 0B080000 JMP 01750922

01750117 90 NOP

01750118 CD 01 INT 1

0175011A E9 03080000 JMP 01750922

0175011F 90 NOP

01750120 CD 02 INT 2

01750122 E9 FB070000 JMP 01750922

01750127 90 NOP

01750128 CD 03 INT 3

0175012A E9 F3070000 JMP 01750922

0175012F 90 NOP

01750130 CD 04 INT 4

01750132 E9 EB070000 JMP 01750922

01750137 90 NOP

01750138 CD 05 INT 5

0175013A E9 E3070000 JMP 01750922

[…]

It continues until INT FF

2 9

P A G E

Anti-instrumentation techniques – Detect by PE
characteristics

• Detect by PE characteristics

• Detect by pinvm.dll presence

• Detect by pinvm exported functions

• Detect by pintools exported functions

• Detect by sections names

3 0

P A G E

Detect by PE characteristics – Detect by pinvm.dll
presence

• Detect by pinvm.dll presence

3 1

P A G E

Detect by PE characteristics – Detect by pinvm
exported functions

• Detect by pinvm.dll exported functions

• PinWinMain

• CharmVersionC

3 2

P A G E

Detect by PE characteristics – Detect by pintools
exported functions

• Detect by pintools exported functions

• CharmVersionC

• ClientIntC

3 3

P A G E

Detect by PE characteristics – Detect by sections
names

• Detect by sections names

• Pintools sections

• .pinclie

• .charmve

• Pinvm sections

• .charmve

3 4

P A G E

Anti-instrumentation techniques – Handles
Inspection

• Handles inspection

• Detect by Event handles

• Detect by Section handles

• Detect by Process handles

3 5

P A G E

Handles inspection – Detect Event handles

• These objects are used by Pin for IPC (Inter Process
Communication)

3 6

P A G E

Handles inspection – Detect by Section handles

• These objects are used by Pin for IPC (Inter Process
Communication)

3 7

P A G E

Handles inspection – Detect by Process handles

3 8

P A G E

Anti-instrumentation techniques – Detect by
execution delay

• Detect time variations

• Detect Pin’s overhead

3 9

P A G E

Detect by execution delay – Time variations

• Detect execution delay introduced by Pin

 printf("HMODULE: %x\n", LoadLibrary("user32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("ntmarta.dll"));

 printf("HMODULE: %x\n", LoadLibrary("gdi32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("advapi32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("comctl32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("comdlg32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("crypt32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("dbghelp.dll"));

 printf("HMODULE: %x\n", LoadLibrary("ole32.dll"));

 printf("HMODULE: %x\n", LoadLibrary("urlmon.dll"));

• Non-instrumented execution ≈ 15 to 30 miliseconds.

• Instrumented execution ≈ 1200 to 1500 miliseconds.

• Depends on your machine’s power.

4 0

P A G E

Anti-instrumentation techniques – JIT compiler
detection

• Detect the JIT compiler

• Detect ntdll.dll hooks

• Detect by page permissions

• Detect by common API calls

4 1

P A G E

JIT compiler detection – Detect by common API calls

• Detect by ntdll.dll hooks

77610038 KiUserApcDispatcher $- E9 C367BBDC JMP pinvm.541C6800

776100EC KiUserCallbackDispatcher $- E9 FB66BBDC JMP pinvm.541C67EC

77610134 KiUserExceptionDispatcher $- E9 EF66BBDC JMP pinvm.541C6828

77639E49 LdrInitializeThunk $- E9 C6C9B8DC JMP pinvm.541C6814

4 2

P A G E

JIT compiler detection – Detect by page permissions

• Detect by page permissions

• This technique

may not work with

programs which

already have a JIT

compiler.

4 3

P A G E

JIT compiler detection – Detect common API calls

• Detect by common API calls

• ZwAllocateVirtualMemory

• AllocationType = MEM_COMMIT | MEM_RESERVE

• Protect = PAGE_EXECUTE_READWRITE

• This technique may not work with programs which already
have a JIT compiler.

4 4

P A G E

Anti-instrumentation techniques – Real EIP value

• Real EIP value

 (Remember that: the original
code remains in memory just as a
reference but it is never executed)

• Detect by FSTENV

• Detect by FSAVE

• Detect by FXSAVE

• Detect by Interruptions

4 5

P A G E

Real EIP value – Detect by FSTENV

 __asm

 {

 fldz;

 fstenv [esp-0x1c];

 mov eax, [esp-0x10];

 mov RealEIP, eax;

 }

• FSTENV saves the FPU environment, which includes the
instruction pointer.

• Alternative: FNSTENV

4 6

P A G E

Real EIP value – Detect by FSTENV

4 7

P A G E

Real EIP value – Detect by FSTENV

VirtualQuery((LPCVOID)RealEIP, &mbi, sizeof(mbi));

if((DWORD)hGlobalModule == (DWORD)mbi.AllocationBase)

 return NOTDETECTED;

else

 return DETECTED;

4 8

P A G E

Real EIP value – Detect by FSAVE

 __asm

 {

 FLDZ

 FSAVE (108-BYTE) PTR SS:[ESP-6C]

 MOV EAX,DWORD PTR SS:[ESP-60]

 }

• FSAVE stores the FPU state (FPU environment + register stack).

• Alternative: FNSAVE

4 9

P A G E

Real EIP value – Detect by FXSAVE

 __asm

 {

 LEA EAX, [ESP-0x20C];

 AND EAX, 0xFFFFFFF0;

 FLDZ;

 FXSAVE [EAX];

 MOV EAX, [EAX+8];

 }

• FXSAVE writes the state of the x87 FPU + MMX registers + SSE
registers.

 5 0

P A G E

Real EIP value – Detect by Interruptions

__asm {
 xor eax,eax;

 xor edx,edx;

 int 0x2e;

 nop;

 mov RealEIP, edx;

}

• This technique was documented by the corkami project
(http://code.google.com/p/corkami/).

• This technique only works on 32 bits systems (Windows
XP/Vista/Seven).

• Does not work on WoW64 (it raises an exception).

5 1

http://code.google.com/p/corkami/

P A G E

Anti-instrumentation techniques - Misc techniques

• Misc techniques

• Detect by Argv

• Detect by parent process

• Detect by SYSENTER emulation

5 2

P A G E

Misc techniques – Detect by argv

• Detect by argv

We get the argv array of our parent process by searching within
the memory of our process.

5 3

P A G E

Misc techniques – Detect by argv

• Detect by argv

000305C8 000305F0 ASCII "C:\pin\\ia32\bin\pin.exe"

000305CC 00030610 ASCII "-p32"

000305D0 00030618 ASCII "C:\pin\\ia32\bin\pin.exe"

000305D4 00030638 ASCII "-p64"

000305D8 00030640 ASCII "C:\pin\\intel64\bin\pin.exe"

000305DC 00030660 ASCII "-t"

000305E0 00030668 ASCII “tools\SimpleExamples\obj-ia32\opcodemix.dll"

000305E4 000306A0 ASCII "--"

000305E8 000306A8 ASCII "C:\dummy.exe"

000305EC FEEEFEEE

5 4

P A G E

Misc techniques – Detect by parent process

• Detect by parent process

• Will not work when instrumenting a process by attaching it.

5 5

P A G E

Misc techniques – Detect by SYSENTER emulation

• Detect by SYSENTER emulation

• Eloi Vanderbeken in 2011 found a bug in the way Pin emulates the

SYSENTER instruction

• Normal execution ring0 – ring3: the execution continues in
ntdll!KiFastSystemCallRet

• Instrumented execution ring0 – ring3: continues in the instruction
following the SYSENTER

• The last affected version of Pin is build 39599, Feb 28, 2011

• Discussion of this bug can be found here:
http://tech.groups.yahoo.com/group/pinheads/message/6363

5 6

http://tech.groups.yahoo.com/group/pinheads/message/6363

P A G E

Misc techniques – Detect by SYSENTER emulation

__asm

{

 //invalid syscall

 mov eax, 0x42424242;

 push retaddress;

 mov edx, esp;

 //Sysenter

 _emit 0x0F;

 _emit 0x34;

 //if execution reaches here, it means that it's being
 instrumented

 mov detected, DETECTED;

 jmp endasm;

 retaddress:

 //normal execution should continue here after the sysenter

 mov detected, NOTDETECTED;

 endasm:

}

5 7

P A G E

Keep in mind that …

• All the presented techniques have different levels of reliability.

• So, you may combine them to be more accurate when
detecting Pin.

5 8

P A G E

eXait – eXtensible Anti-Instrumentation Tester

5 9

P A G E

eXait – eXtensible Anti-Instrumentation Tester

• There are benchmark-like tools to test:
• Anti-Virtualization techniques (ScoopyNG - Trapkit)

6 0

P A G E

eXait – eXtensible Anti-Instrumentation Tester

• There are benchmark-like tools to test:
• Anti-Debugging techniques (xADT- Shub Nigurrath)

6 1

P A G E

eXait – eXtensible Anti-Instrumentation Tester

• eXait is the eXtensible Anti-Instrumentation Tester tool.

• It was written in C using Visual C++ Express 2008.

• It has a plugin architecture.

• It is open-source code (BSD license).

• It has more than 15 plugins to test all the techniques presented
in this talk.

6 2

P A G E

eXait – eXtensible Anti-Instrumentation Tester

6 3

P A G E

eXait – eXtensible Anti-Instrumentation Tester

• eXait comes in two flavors: console and GUI.

• You can write your own plugins for eXait, check the project
wiki.

• We are waiting for your contribution.

6 4

P A G E

eXait – eXtensible Anti-Instrumentation Tester

• eXait can be downloaded from:

 http://corelabs.coresecurity.com

6 5

P A G E

Applications of our research

6 6

P A G E

Applications of our research

• Each one of the discussed techniques can be included in any
software that wants to protect itself against dynamic binary
analysis:

• Packers

• Malware

• Shellcodes?

6 7

P A G E

Future work

6 8

P A G E

Future work

• Extend our research to other DBI frameworks (DynamoRIO,
Valgrind, DynInst, ERESI, Fjalar).

• Further our research to other platforms and architectures.

• Find new anti-instrumentation techniques (obvious!!!).

6 9

P A G E

Future work

• Create a library for pintools to bypass anti-instrumentation
techniques.

• Things to discuss in this field:
• How to implement it as generic as possible?

• Is this a never ending story? Who wins, if anyone?

7 0

P A G E

It’s show time!. Demo.

7 1

P A G E

Acknowledgments & Greetings

7 2

P A G E

Acknowledgments & Greetings

• Fernando Russ
• for coordinating our research and feedback

• Gal Diskin
• for his feedback about the presentation

• Ariel Futoransky
• for his ideas for further research

• RECon Organizers

7 3

P A G E

Contact info

7 4

P A G E

Contact info

Francisco Falcón
 @fdfalcon

 ffalcon@coresecurity.com

Nahuel Riva
 @crackinglandia

 nriva@coresecurity.com

7 5

mailto:ffalcon@coresecurity.com
mailto:nriva@coresecurity.com

P A G E

Questions?

7 6

P A G E

Thank you.

7 7

