
Extraordinary String Based Attacks

About Me

 Security Researcher at Azimuth Security

 Past presentations

 Heaps of Doom (/w Chris Valasek)

 Kernel Attacks Through User-Mode

Callbacks

 Kernel Pool Exploitation on Windows 7

 Generally interested in operating system

internals and bug finding

 Recent focus on embedded platforms

This Talk

 A rather unusual Windows bug class

 Affects Windows atoms

 3 vulnerabilities patched 2 days ago in

MS12-041

 Allows a non-privileged user to run code

in the context of a privileged process

 E.g. the Windows login manager (winlogon)

 No need to run arbitrary code in Ring 0

 DEP/ASLR? SMEP? No problem!

Previous Work

 Atoms briefly mentioned in Windows

sandboxing literature

 Stephen A. Ridley – Escaping the Sandbox

 Tom Keetch – Practical Sandboxing on

Windows

 Getadmin exploit (1997)

 Exploited unchecked pointer in NtAddAtom

 API issue – not specific to atom misuse

Outline

 Atoms

 Vulnerabilities

 Attack Vectors

 Exploitation

 Windows 8

 Conclusion

Smashing the Atom

Atoms

 A Windows data type used to store strings
and integers
 Referenced using 16-bit values

 Stored in a hash table known as an atom
table

 Generally used to share information
between processes
 Initially designed to support Dynamic Data

Exchange (DDE)

 Also used by the operating system

Atom Tables

 Defined in the local (application) or

global (system) scope

 Application defined tables are fully

managed in user-mode

 System defined tables are managed by

the kernel

 Callouts to win32k where necessary

 Two common system tables

 Global And User Atom Tables

Local Atom Table

 Defined per application

 Table initialization handled transparently

to applications

 Exposed through an own set of APIs

(kernel32)

 AddAtom, DeleteAtom, FindAtom, …

 Actual implementation in runtime library

(NTDLL)

Global Atom Table

 Defined per window station

 win32k!CreateGlobalAtomTable

 Accessible to any application in the

same window station by default

 Can also be job specific if global atoms

UI restrictions are enabled

 Exposed through an own set of APIs

prefixed “Global”

 GlobalAddAtom, GlobalDeleteAtom, …

Window Station

Global Atom Table (DDE)

Client Process

Client

Window

Global Atom Table

Server Process

Server

Window

Registers conversation

topic string atom

Sends message with

topic atom Uses the atom to look

up the topic string

Atom

User Atom Table

 Defined per session

 win32k!UserRtlCreateAtomTable

 Holds data used by the User subsystem

 Window class names

 Clipboard format names , …

 Not exposed to user applications directly

 However, some APIs allow values to be

inserted and queried

 RegisterWindowMessage

Atom Table Interaction

Kernel-Mode

User-Mode

Windows 7 SP1

AddAtom GlobalAddAtom

InternalAddAtom

RtlAddAtomToAtomTable

NtAddAtom

RtlAddAtomToAtomTable

UserGlobalAtomTableCallout

UserAddAtom

User Subsystem

NTDLL

KERNEL32

NTOSKRNL
WIN32K

Atom Types

 Two types of atoms

 Strings and integers

 Both types are managed by the same

atom table

 Defined with separate atom value ranges

 No type information needed

 Both types are handled using the same

APIs

String Atoms

 Registered upon passing a string to

RtlAddAtomToAtomTable

 Assigned an atom value in the range

0xC001 through 0xFFFF

 Subsequently used to look up the string

 Limits the string size to 255 bytes

 Reference counted to keep track of use

 Example: Window class names

Integer Atoms

 Integer values map directly to the atom

value

 Never actually stored in the atom table

 Defined in the range 1 to 0xBFFF

 Only stores decimal values up to 49151

 Only registered for the sake of

consistency

 Example: Standard clipboard formats

Atom Table Creation

 Created using RtlCreateAtomTable

 Initialized with an integer representing

the number of hash buckets (default 37)

 A string atom is inserted into a bucket

based on its string hash

 Used for efficient lookup of string atoms

 The atom table itself is defined by the

RTL_ATOM_TABLE structure

Atom Table Structure

typedef struct _RTL_ATOM_TABLE

{

/*0x000*/ ULONG32 Signature;

/*0x004*/ struct _RTL_CRITICAL_SECTION CriticalSection;

/*0x01C*/ struct _RTL_HANDLE_TABLE RtlHandleTable;

/*0x03C*/ ULONG32 NumberOfBuckets;

/*0x040*/ struct _RTL_ATOM_TABLE_ENTRY* Buckets[1];

} RTL_ATOM_TABLE, *PRTL_ATOM_TABLE;

Windows 7 SP1 (x86)

Atom Table Entries

 Each string atom is represented by an

RTL_ATOM_TABLE_ENTRY structure

 Defines the atom value and string

 Reference counted to keep track of

string (atom) use

 Incremented whenever an identical string is

added to the atom table

 Flags to indicate whether an atom has

been pinned

Atom Table Entry Structure

typedef struct _RTL_ATOM_TABLE_ENTRY

{

/*0x000*/ struct _RTL_ATOM_TABLE_ENTRY* HashLink;

/*0x004*/ UINT16 HandleIndex;

/*0x006*/ UINT16 Atom;

/*0x008*/ UINT16 ReferenceCount;

/*0x00A*/ UINT8 Flags;

/*0x00B*/ UINT8 NameLength;

/*0x00C*/ WCHAR Name[1];

} RTL_ATOM_TABLE_ENTRY, *PRTL_ATOM_TABLE_ENTRY;

Windows 7 SP1 (x86)

For handling string

hash collisions

Used to generate

atom values

Track atom use

Atom Pinning

 If the reference count of an atom overflows,

the atom is pinned

 Indicated by the RTL_ATOM_PINNED (1) flag

 A pinned atom is not freed until its atom

table is destroyed

 E.g. upon destroying a window station or

logging out a user

 Windows also supports on-demand pinning

 RtlPinAtomInAtomTable

 Prevents atoms from being deliberately deleted

Atom Value Assignment

 Atom tables use a separate handle table

for string atom value assignment

 Retrieved using ExCreateHandle

 Attempts to use a recently freed handle

to optimize lookup

 Otherwise performs exhaustive search

 Actual atom value is obtained by OR’ing

the handle index with MAXINTATOM

 Atom = (Handle >> 2) | 0xC000

System Atom Table Access

 System atom tables are generally

available to all user processes

 Designed for sharing information

 In a sandbox, we want to restrict access

in the less privileged components

 Prevent leaking of (sensitive) information

 Prevent deletion of atoms used by other

(e.g. more privileged) applications

Global Atom Table Access

 Access can be restricted using job object

UI restrictions

 JOB_OBJECT_UILIMIT_GLOBALATOMS

 When set, Windows creates a separate

atom table and associates it with the job

object

 The process of choosing the correct atom table is

handled in win32k!UserGlobalAtomTableCallout

 Checks the global atoms UI restriction flag by

calling nt!PsGetJobUIRestrictionsClass

User Atom Table Access

 In Windows 7, there’s no practical isolation

of the user atom table

 More on Windows 8 later

 Accessible to any process running in the

same session

 E.g. using APIs which (indirectly) operate on it

 A process can query the values of any user

atom using GetClipboardFormatName

 No distinction made between clipboard format

strings and other user atom strings

Enumerating User Atoms

Smashing the Atom

Atom Handling Vulnerabilities

 3 separate vulnerabilities in string atom
handling
 Register Class Name Handling Vulnerability

 Set Class Name Handling Vulnerability

 Clipboard Format Name Handling Vulnerability

 Addressed in MS12-041
 http://technet.microsoft.com/en-

us/security/bulletin/ms12-041

 Allows an attacker to take control over
system managed string atoms
 We discuss the implications of this later

http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041

Window Class

 An application describes a window’s

attributes using a window class

 Defined by the WNDCLASS(EX) structure

 lpszClassName sets the class name

 Can either be a string or an atom

 Win32k differs between the two

internally by looking at the high 16-bits

 If only lower 16-bits are set, it is handled as

an atom

Class Name String Atom

 If a string is provided, win32k converts

the string into an atom

 Handled by win32k!UserAddAtom

 Atom value stored in the win32k managed

class data structure (win32k!tagCLS)

 If an atom is provided, the function

simply copies its value to the class data

structure

 No atom validation or retaining of reference

CVE-2012-1864

No reference

acquired when

providing an atom

Atom stored

Windows 7 SP1 (x86)

CVE-2012-1864

 When a class is unregistered,

win32k!DestroyClass releases the

atom reference

 Even when no reference was acquired

previously

 An attacker could register a class using

an atom of a more privileged application

 Could free and reregister the atom with a

different string

Version Prefixed Class Name

 Since Windows XP, class objects define
two class name atoms
 atomClassName

 atomNVClassName

 The former defines the base class name
 Fixed once registered

 The latter prefixes the name with version
specific information
 6.0.7600.16661!ScrollBar

 Allows classes of the same name, but of
different versions to be styled differently

Updating Class Name Atom

 An application can update the version
prefixed name of a registered class
 SetClassLongPtr using the GCW_ATOM

(0xFFFFFFE0) index

 Internally, win32k looks up the index
(adjusted) in an offset table
 Finds the offset to the atom value in the class

object structure

 In setting or replacing the version prefixed
class name atom, no validation or
referencing is performed

CVE-2012-1865

Offset to version

prefixed class

name in the class

data structure

Replaces value without

validation and acquiring

or releasing references

Windows 7 SP1 (x86)

Clipboard Formats

 Windows uses atoms to uniquely identify
each clipboard format type

 Applications can also register their own
clipboard formats

 user32!RegisterClipboardFormat

 Registers the atom for the user provided
format name string in the user atom table

 user32!SetClipboardData

 Sets clipboard data of the particular type
using the provided atom value

InternalSetClipboardData

 Handles SetClipboardData requests

 Calls win32k!UserGetAtomName and

win32k!UserAddAtom if the provided

atom is present

 Properly verifies and references the string atom

 If the atom is not present, the function still

saves the data using the (invalid) atom

 Considers the atom to be a default type (integer)

 Fails to check if the atom is really an integer

atom (i.e. below 0xC000)

CVE-2012-1866

References atom if string is

present in the user atom

table

Considers the atom to be

valid, regardless of type

Windows 7 SP1 (x86)

Smashing the Atom

Enumerating Attack Vectors

 Look at how (string) atoms are used by

the system

 Registered window messages

 Clipboard format names

 Window class names

 Cursor module paths

 Hook module paths

 Evaluate how user input may affect

string atom operations

Registered Window Messages

 An application can register new window

messages

 RegisterWindowMessage

 Stored as a string atom in the user atom

table

 Typically used when messaging

between two cooperating applications

 If both register the same string, they receive

the same message value

Registered Window Messages

 Windows does not pin the string atom

for the registered message

 An attacker may potentially free window

message atoms registered by

applications

 Can cause desynchronization between two

applications sending private messages

 E.g. by freeing and re-registering messages

in reverse-order

Clipboard Format Names

 Applications can register their own

clipboard formats

 RegisterClipboardFormat

 Identified as string atoms in the user atom table

 These atoms are not pinned, hence can be

freed by an attacker

 However, clipboard data handling between

privilege levels is subject to UIPI

 List of exempt formats only contain standard

(integer) clipboard formats

Window Class Names

 Names of window classes are stored in
the user atom table

 Atom used by the class object to look up the
class name string

 Windows does not pin the string atoms
of non-system class objects

 An attacker could free the atom used by
the system to identify class objects

 Re-registering the string could cause
lookups to resolve to the wrong object

Cursor Module Names

 Windows stores the module path of a

loaded cursor as a string atom

 atomModName field of the cursor object

 Used to determine if a cursor has

already been loaded

 win32k!_FindExistingCursorIcon

 Windows does not pin this atom

 An attacker could potentially free its value

 Minimal security impact

Hook Module Paths

 Windows allows external modules to be

used when setting windows hooks

 SetWindowsHookEx

 SetWinEventHook

 RegisterUserApiHook

 The module path is stored as a string

atom in the user atom table

 Atom value stored at an index in the global

aatomSysLoaded array

Kernel Mode

Hook Module String Atoms

SetWindowsHook SetWinEventHook RegisterUserApiHook

Hook Object

ihmod

Event Hook Object

ihmod

gihmodUserApiHook

Atom User Atom Table … …

aatomSysLoaded

aatomSysLoaded

array index

Hook Module Loading

 Windows looks up the string atom upon

loading an external module hook

 Invokes a user-mode callback and passes

the string to LoadLibrary

 An attacker who frees any such atom

could possibly inject arbitrary modules

 Hooks play an integral part in Windows

in providing application theming

 Relies on the user api hook

User Api Hook

 Special hooking mechanism introduced

to support Windows themes

 RegisterUserApiHook

 Can only be registered by privileged

processes

 Requires the TCB privilege

 Caller must be running as SYSTEM

 Allows Windows to load a theme client

module into every GUI application

Smashing the Atom

Theme Subsystem

 Introduced in Windows XP

 Extended in Vista to support desktop

composition (DWM)

 Hooks into USER32 in order to

customize non-client region metrics

 Loads an instance of uxtheme.dll into

every Windows application

 Uses the user api hook registered by

winlogon

Theme Server

 Manages the theme subsystem

 Runs in a service host process

 Registers //ThemeApiPort

 Keeps track of the Windows theme

configuration for all running sessions

 Each GUI (themed) process keeps an

active connection with the theme server

 Used to retrieve updated theme

configurations

Theme Api Port Connections

kd> !alpc /lpc 8701a458

8701a458('ThemeApiPort') 1, 10 connections

 85a17ae0 0 -> 85e53038 0 853c3790('winlogon.exe')

 872802f8 0 -> 863df540 0 853d8540('winlogon.exe')

 85289f00 0 -> 853e3038 0 853c3790('winlogon.exe')

 86464d18 0 -> 8538a928 0 853d8540('winlogon.exe')

 85be9038 0 -> 8533c2e0 0 853ea5c0('mmc.exe')

 87257980 0 -> 86fd6458 0 85e63030('explorer.exe')

 871fd038 0 -> 86f3db98 0 85dfc8a0('dwm.exe')

 85a53368 0 -> 8534f298 0 852eb030('explorer.exe')

 871c76a0 0 -> 8659ef00 0 852aa030('calc.exe')

 872bc8f8 0 -> 85e6b370 0 853a4388('procexp.exe')

Theme Session Initialization

 On each new session, Winlogon calls

UXINIT to interface with the Theme Server

 Acts as the theme server client

 Sends a ThemeApiConnectionRequest packet

to //ThemeApiPort over ALPC

 Once connected, Winlogon registers a set

of callbacks

 CThemeServerClient::SessionCreate()

 Allows the theme server to load themes and

install and remove theme hooks

Theme Hooks Installation

 For installing hooks, the theme server
service injects a thread into Winlogon

 UXINIT!Remote_ThemeHooksInstall

 Winlogon (from UXINIT) subsequently
calls RegisterUserApiHook

 Takes a structure defining the library to load
and the function (export) to execute

 Library:
%SystemRoot%/System32/uxtheme.dll

 Function: ThemeInitApiHook

Windows 7 SP1

Session 0

Ux Theme Architecture

Winlogon

Service Host

UXINIT Theme

Service

Process

UXTHEME

Registers the

User Api Hook

Request applications

(via message broadcast)

to retrieve new theme

configuration

ThemeApiPort

Loaded on demand

by the USER

subsystem

Informs winlogon

about theme changes

RegisterUserApiHook

 Called by winlogon (UXINIT) to register

the user api hook

 NtUserRegisterUserApiHook

 Registers a string atom for the module

path in the user atom table

 Atom stored in win32k!aatomSysLoaded

array

 Array index stored in

win32k!gihmodUserApiHook

xxxLoadUserApiHook

 Retrieves the value of the UAH string

atom held by aatomSysLoaded

 Module (uxtheme.dll) path

 Calls win32k!ClientLoadLibrary to load

the module in a user-mode callback

 Client side calls user32!InitUserApiHook

which hooks several user-mode functions

 Subsequently called by USER32 to theme

various aspects of the user interface

User Mode

(Process)

Kernel Mode

UxTheme Loading

USER32

xxxLoadUserApiHook

xxxCreateWindowEx xxxDefWindowProc xxxRealDefWindowProc

UXTHEME

ClientLoadLibrary

Leveraging UxTheme

 Windows does not pin the string atom of

the UxTheme library path

 An attacker could potentially free the

atom and take control of the string

 Atoms values used to perform lookups, i.e.

no use-after-free of pointer values

 May cause subsequent processes to

load the module of the specified string

Plan of Attack

 Invoke an arbitrary module into a more

privileged process

 E.g. running as SYSTEM

 Requirements

 Spawn a new (privileged) process

 Running in the same session

 Must invoke the USER subsystem (i.e. load

user32.dll)

System Processes

 Two SYSTEM processes in a typical

user session

 Client-Server Runtime SubSystem (CSRSS)

 Windows Login Manager (winlogon)

 CSRSS manages the Windows

subsystem

 CSRSS and system worker threads are

prevented from loading the user api hook

 Checks in win32k!xxxLoadUserApiHook

Winlogon and LogonUI

 Winlogon spawns a separate LogonUI

process

 Loads credential providers

 Displays the Windows login interface

 Started on demand whenever Windows

needs to present the login interface

 Runs on the Secure Desktop (/winlogon))

 Only System processes can run on this desktop

 Hence, LogonUI runs as System

Targeting LogonUI

 Demo

Smashing the Atom

App Container

 A new application security boundary

introduced in Windows 8

 Not just specific to WinRT / metro

applications

 Allows more granular access control

 Introduces the concept of capabilities

 E.g. Internet access, music/picture/video

libraries, removable storage, etc.

 Has its own namespace

App Container Launch

 CreateProcess allows processes to be run
in app containers
 E.g. used by IE 10 “Enhanced Protected Mode”

 Creates a low box token and assigns it to
the created process
 BasepCreateLowBox

 Sets up the namespace directories and
Global, Local, and Session symlinks
 /Sessions/<num>/AppContainerNamedObjects/

<package-sid>

 BasepCreateLowBoxObjectDirectories

Low Box Token

 The crux of the app container

 Basically an extension of the token
object (nt!_TOKEN)

 TokenFlags defines whether a token is a low
box token

 #define TOKEN_NOT_LOW 0x2000

 #define TOKEN_LOWBOX 0x4000

 Created by the kernel using a dedicated
system call

 NtCreateLowBoxToken

NtCreateLowBoxToken

 Allows applications to arbitrarily create low
box tokens

 Requires a base token
 Must not be impersonating

 Cannot already be a low box token

 Assigns capabilities (SIDs) to a token

 References a set of handles by duplicating
them into the system process
 Guarantees that objects (i.e. namespace) stay

valid for the lifetime of the token

NtCreateLowBoxToken

NTAPI

NTSTATUS

NtCreateLowBoxToken(

OUT HANDLE * LowBoxTokenHandle,

IN HANDLE TokenHandle,

IN ACCESS_MASK DesiredAccess,

IN OBJECT_ATTRIBUTES * ObjectAttributes OPTIONAL,

IN PSID PackageSid,

IN ULONG CapabilityCount OPTIONAL,

IN PSID_AND_ATTRIBUTES Capabilities OPTIONAL,

IN ULONG HandleCount OPTIONAL,

IN HANDLE * Handles OPTIONAL

);

Low Box Number Entry

 Each low box token is assigned a low

box number entry

 Creates a hard link between the token and

the package sid

 nt!_SEP_LOWBOX_NUMBER_ENTRY

 Defines the low box (app container) id

 Unique session specific numeric identifier

 Retrieved from the session lowbox bitmap

(nt!_SESSION_LOWBOX_MAP)

Low Box Atoms

 Windows 8 introduces low box atoms

 Implemented using a new atom table

reference structure

 Allows atoms to be stored in the same

table, while restricting access from other

apps

 Prevents atoms from being deleted by

low box (app container) applications

Atom Reference Structure

 Embedded by the atom table entry structure

 Creates a link between the atom and the low
box id

 Flags field indicates whether the atom should
be shared globally
 #define ATOM_FLAG_GLOBAL 0x2

 Can be set using the new AddAtomEx API

kd> dt nt!_RTL_ATOM_TABLE_REFERENCE

+0x000 LowBoxList : _LIST_ENTRY

+0x010 LowBoxID : Uint4B

+0x014 ReferenceCount : Uint2B

+0x016 Flags : Uint2B

Atom Table

Atoms in Windows 8

Atom Table Entry

Atom Table

Reference

Atom Table

Reference

App

Container ID

Atom Table

Reference

App

Container ID

Low box atom string

references

Defines whether atoms should

be accessible to low box apps

RtlpLookupLowBox

 Called when querying, deleting, or pinning
an atom
 Calls RtlpQueryLowBoxId to determine

whether a low box token is active

 Returns the atom table entry if
 The entry belongs to the current low box id

 The entry permits access from low box apps

○ Flags & ATOM_FLAG_GLOBAL

 Can optionally override (set by argument)
the entry and always deny low box access
 Used by RtlDeleteAtomFromAtomTable

Demo

 run_lowbox

Smashing the Atom

Developer Advice

 Always reference atoms on use

 Be cautious about trusting information

held by the global atom table

 Avoiding it is probably best

 Use job objects to restrict global atom

table access on untrusted processes

 Windows 8: Use the low box token for

added security

 Intra-table atom access restriction

System Hardening

 Not all kernel vulnerabilities involve

semantically invalid memory access

 Mitigations may be less effective

 OS hardening generally helps limit the

impact of such vulnerabilities

 Code signing (page hashing) can

address rogue module injection

 Already used by Apple in iOS

Thanks!

 Questions

 @kernelpool

 kernelpool@gmail.com

 Greetz

 redpantz, aionescu, meder, mdowd, hzon,

endrazine, msuiche, taviso, djrbliss, jono,

mxatone, cesarcer, beist, ++

 REcon

mailto:kernelpool@gmail.com

References

 http://msdn.microsoft.com/en-

us/library/windows/desktop/ms649053(v

=vs.85).aspx

 http://technet.microsoft.com/en-

us/security/bulletin/ms12-041

http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms649053(v=vs.85).aspx
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041
http://technet.microsoft.com/en-us/security/bulletin/ms12-041

