5 Ave RECON.

SHALL HE PLAY A GAME?

Lessons learned while playing
CoreWars8086

Shapira Elad (*Zest’) | Security Researcher | 29-6-2014

¥ avc

AYG

#Whois Elad Shapira (Zest’)

— & 328

BINJITSU IV

Reverser from the Holy Land.

Mobile Security Researcher @AVG.

Highly passionate for RE, Assembly and Low-Level.
Speaker (ClubHack, Ground Zero Summit..).
Co-0Organizer of CoreWars8086 competition (IL).

mov
mov

mov
sub
sar
mov
mov

al,7
[es:di+1],al

di, [Cur]

bx, di

bx,2

bx,1

al, [si+bx]
[es:di-2],al

A total of 300 tickets will be sold for this year's conference.

Does it got any
sports in it?

“No Starch”.. ©

- Timeline of the CoreWars8086 competition.
- Arena, Engines and rules.

- How to analyze and write survivors.

+ Optimization.

- Anti reversing techniques.

« Future / Improvements.

« Share ideas — Create new ideas!

- Hangover.

- Alexander Dewdney / D.G. Jones.
- CoreWars / RedCode
- http://vyznev.net/corewar/guide.html

1
[Hote: This=s i= a reprodouction of the Core War Guidelines Redeead baby-
originally produced by Jones and Dewdney in March of 1884] 1

Red's dead.

CORE WAR GUIDELINES
D. G. Jone=s and A. E. Dewdney

Department of Computer Science
The Tniverzity of Western Cntario

March, 1984

http://vyznev.net/corewar/guide.html
http://vyznev.net/corewar/guide.html

—

Y99Nipn9

« 1st round (remote) - 25%
- 2nd round (Face-2-face) - 25% 09:00 AM

— ¥99Mipno <€—— QOther competitors

. 3»rd round (Face-2-face) - 50% 12:01PM
- Top 4 survivors get to the final.
* Final = Winners!

10

‘AVG {@s https://code.google.com/p/corewars8088,

e %ﬁg icorewar58086

Core\Wars 8086 game engine, written in Java.

Survivors in general

- Download, Unzip & play (Google Code).

- Survivor's name == file's name (without
extension).

- 8086 opcodes, 16bit instructions.
* Not all instructions are supported (Pusha,Popa,..).
- Compiled as ‘com’ file

- DOS command file format. ﬁsuwws
- Maximal survivor size - 512 bytes. g zombies
- Each team can submit two survivors. 2logcbat |

ﬂ Corewars,jar

¢ ROCle & ROCkyz. @SEDFES.ES"."

11

¥ avc

Virtual Arena

- Loaded to the virtual arena each time with
random address (copied “as is”).

- Distance between two survivors and the sides
is at least 1024 bytes.

- All cells initialized to ‘CCh' before start.

- End of the battle
« 200,000 rounds or one survivor left.

- Order of the survivors is determined
randomly at the beginning and cannot be
changed.

12

2% AvG

Arena (NOT virtual)

13

¥ Aavc

1

o

Arena & Addresses

20
21
22
23
24
25

FEOO FFO1
FFOO FFO1

OOFE
O1FE

FEFE
FFFE

OOFF
O1FF

FEFF
FFFF

46

MOov
MOov
MoV
Mmov
mov
mov
mov
mov

2041
2045
2243
2340
2441
2542
2444
2345

- D D D D D D

¥ avc

Survivor’s Registers (before 1st round)

- BX,CX,DX,SI,DI,BP = 00s.
- Flags = 00s.
- AX, IP - Initial location of the survivor, offset.

- CS, DS - Segment that was assigned to the
SUurvivors.

- ES - Segment for survivors from same team
(shared memory) — 2048 bytes.

- SS - Beginning of the personal stack (2048).
* 55:0x00 - ss:0x7ff, initialized to 0x00.

- SP - Offset of beginning of personal stack (00s).

15

¥ avc

How survivor gets killed

- Running illegal command

 The 060h byte does not translated to an
assembly command.

- Engine: "Died due to CPU".
- Running commands that are not supported
by the engine
- For example ‘int 21h".
- Access to memory not in the arena or not in
the range of the survivor's personal stack.
« For example ES:0x1234.
- Engine: "Died to memory exception”.

16

¥ Aavc

Zombies

Sent by organizers before competition begins.
Regular survivors that do not get points.

Different CPU states problem.

+ Direction flag (MOVSW will kill master).
Zombies can still win the battle

 less points for us.

 We need to encourage them to commit suicide.
Contain Math Riddles (That you need to solve).

17

¥ avc

Pwning bugs in the engine

File[] warriorFiles = warriorsDirectory.listFiles():
if (warriorFiles == null) {
J0ptionPane.showMessageDialog(null,

"Error - survivors directory (\"" +
WARRIOR_DIRECTORY + "\") not found");
System.exit(1l);

WarriorGroup currentGroup null:

Fr cant | £3 I enaome
4 Zaort Dy J ELETIUnTS

Arrays.sort(warriorFiles, new Comparator<File»() {

return ol.getlName().compareToIgnoreCase(o2.getName());

s

¥
h

readZombies();

FULL STOP (U+002E)
S50LIDUS (U+002F)
DIGIT ZERO (U+0030)

DIGIT OME (U+0031)

How to make your survivors be the firsts to run?

OSurvivorName

18

What is the advantage?

¥ avc

Zombies can fix your survivor’s code

OSurvivoXeaml (Xx2)
SurvivorTeam2 (x2)
SurvivorTeam3 (x2)
Zombiel
Zombie2

19

¥ avc

Zombies can fix your survivors code

OSL*VOXGaml (x2)
SurvivorTeam?2 (x2)
SurvivorTeam3 (x2)
Zombiel
Zombie2

20

¥ avc

Zombies can fix your survivors code

OS‘/OXeaml (x2)

SurvivorTeam?2 (x2)
SurvivorTeam3 (x2)
Zombiel

Zombie2

21

¥ avc

Zombies can fix your survivors code

OS‘/'aml (x2)
Survivorieam?2 (x2)
SurvivorTeam3 (x2)
Zombiel
Zombie2

22

23

To stay on the safe side..

SOMEONE NAME HIS SURVIVOR
WITH 0 ASFIRST CHAR

! s VR —)
=4 ‘;V_ o 5e -t ‘e :
: Ay 4
’ q“ | s

¥ avc

Safe Cracking

24

¥ avc

Safe example#1
-21845

loop:

mov AX,[1234] [1234] = AAAB age tote me 10
mov BX,3 3*AX=1 W
mul AX BX*AX=1 ERE R
sub AX,1 AX=1

jnz loop ZF=1

killer:
x . mov AX, AAAB
Solution:
mov ptr word [1234], AX
JMP Kkiller

25

¥ Aavc

Safe example#2

loop:

mov AL,[111] [111]=49H

add AL,0A8h 73+168=241(F1)

mov AH, [112] [112]=42H

xor AH,0ADh ADH xor 42H = EFH (239d)

mul AH AX=AH * AL=239 * 241 =57599
cmp AX,0xeOff AX=57599d

jne loop ZF=1

x

26

¥ avc

Safe example#2

loop:

mov AL,[111]
add AL,0A8h

mov Al
xor AF

mul AH

, [112]
,0ADh

cmp AX,0OxeOff

x

27

jne loop

Solution:

killer:
mov AL, 49H
mov AH, 42H

mov ptr byte [111], AL
mov ptr byte [112], AH
jmp killer

¥ avc

Important factors

« Survivors usually contain
- Initialization.
- Bombing loop.
- Write -> Update address for next writing ->
Jumping to beginning of loop
- We usually measure survivors by
- ‘Area of vulnerability’
- ‘Attack rate’.
- We can cause unexpected phenomenon
« mov AX, 0000 -> mov ax, Occcch (2,3 bytes).

28

29

- Smallest functional survivor (EBFE, jmp $):
Loop:
Jmp loop

- Good to test other survivors.

ﬁ_AVG. Attack Vulnerability
sequence proflle

Bomber Demo

3/1

CodeGuru Extreme - Session Viewer

mov al, 0CCh
mov bx, O

@loop:
mov [bx], al
inc bx

3] BOmDer enters the ¥era - :
) theg enterns the e
7] mothinga enters the Jerna
-
Lotnd Cho 3 View CPY » Snghe 02
oo

*.AVG- Attack Vulnerability
sequence profile

3/1 7

Cannon Demo

& CodeGury BExtreme « Session Viewer

@start:

mov bx, ax

add bx, (@end - @start)
mov al, 0CCh

ZOM9 Se
ZOM9 _Sf

@loop:
mov [bx], al
add bx, 8

jmp @loop
@end:

Rowund Close Speet L0 View OV e surme Sagho Roens

ﬁ.AVG- Attack Vulnerability
sequence profile “
“’ i N

Shooter Demo 32 °

CodeGury Bxtreme - Session Viewer

MOV DI,AX
MOV AX,0CCCCh

@loop:
STOSW
ADD DI,9

JMP @loop

32

¥ avc

Heavy Bombing

Writes on 256 bytes (es:di -> 255 addresses)

es same value as cs -> if not memory
exception after the interrupt

CLD/STD -> change direction

2 Heavy Bombing each battle

We can bomb sharled segment
d

INT 86h 2 d an

¥ AvG

Heavy Bombing Demo (Opposite direction)

CodeGury Extreme « Session Viewer

push cs
pop €s

xor di,di

mov ax, Occcch
mov dx, ax

std

int 86h

jmp S

Rownd Close Spees LG View OV e surme Snge Kosnd

¥ Aavc

Smart Bombing

Bombing the first occurrence of AX:DX in
memory.

Replacing it with data we want
- Illegal commands or jmp to our code.

We can attack ourselves..
1 Smart Bombing each battle.

INT 87 AX DX CX BX

39d8h 7405h

Direction flai

es:di+2

39d8h 7405h

es:di

35

¥ Aavc

Protection from Smart Bombing

- Change functionality of registers (BX <-> BP).
- Usually does not matter.
« Change order of independent commands
- Put 3 values to 3 registers = Few different ways.
- copy parts of the code
- To the beginning and the end.

- Variable that changed during runtime near
main loop/code part (SP).

- Encoding with random numbers.
- XORIng (will be discussed later).

36

¥ Aavc

Smart bombing FAIL protection (CGX#9.5)

jmp short 0x12 std
mov si,0x95a0 cmp ax,bx
xchg ax,bx jnc Ox1c push cs
cld or al,0x90
lodsw QQS\) POp €5
<td mov ax, OF4E2h
cmp ax,bx mov si,0x95a0 mov dx, OAOBEh
jnc Oxc xchg ax,bx mov cx, Occcch
or al,0x90 cld
odsw lodsw mov bx,cx
A0
mv si,095a0 BEAQ CMF ax,bx Int 87h
XCNE axX, DX Jjnc Ox2c
Cld or al,0x90 Jmp $
lodsw lodsw

|oop Ox26 Zomble ==?

¥ Aavc

Binary search (“'Lion in the desert”)

jmp short 0x12 =3 Jumping to body

The "talking location" that the
mov si,0x95a0 = survivors and the zombie talk in
xchg ax,bx

cld \ Keep loading address on the side
Icggsw (LODSW will change AX)
S

cmp aXoX Clears the direction flag (DF=0)
jnc Ox1c
or al,0x90

odsw

LODSW === MOV AX,[SI++ or SI--]
AX will hold the ‘talking location’
oop 0x16 DF=1 (later SUB SI, 2 to change back)

38

¥ avc

Binary search (“Lion in the desert”)

jmp short 0x12 Compare his address (BX) to talking

.- location (AX) - change only flags.
mov si,0x95a0

xchg ax,bx AX >=BX

cld €= jumps into itself (IP increased by 1)
lodsw

std 73 FF 73 FF Dec [si] €= Next cell
cmp ax, bx 0C90 0C 90

jnc Ox1c nop

or al 0x90 === changes AL + AX changed again?

OdSV\(l) 1Nﬂdden Dec[Si] command ©
X
DF=1 (sub si, 2 to change back)

39

¥ Aavc

6 Zombies

push cs

pop es

int Ox87

and ax,0x7fff
push ax

mov bl,[0Oxc0de]
test bl,bl

jns 0x16

div bl

mov [0xc0dd],ah
pop ax

jmp short Ox7

40

Zombie ==7

mov bl,[0xcOde]
mov bl,[Oxclde]
mov bl,[Oxc2de]
mov bl,[Oxc3de]
mov bl,[Oxc4de]

mov bl,[Oxc4de]

mov [0xcOdd],ah
mov [Oxcldd],ah
mov [Oxc2dd],ah
mov [0xc3dd],ah
mov [Oxc4dd],ah
mov [Oxc4dd],ah

public start
start proc near
push cs
pop es
assume es:segqd0O
int 87h
and ax, TFFFh
X,
kbl e B9
loc_10107:
push ax
mow bl, ds:0CBDEh
test bl, bl
jns short loc_10116
L
il e B9
div bl
mov ds:0CODDh, ah
X
bl e B
loc_10116:
pop ax
jmp short loc_10107

start endp

segf00 ends

end start

SFAVG Not to be confused with the military theorist Sun Tzu

Chinese Remainder Theorem

2x=2 | (med3) X= Z(med>
2 =2 (Mo dWNN & XZ= 22.(mod
U= 3 oI S) = 2 (med3)

X =2 (med b8)

Formula used to find all the zombies:

input = ?

al = (input%254);

a2 = (input%?255);

input = (@1*255*1 4+ a2*254*254)%(255*254);

41

42

Sometime, the organizers
send invalid zombies...

WORKS ALL NIGHT
ON PWNING THE ZOMBIE

,ABIIGII'IIIZIIBIE"

mgflipicom

opcodes

rounds

Not optimized

Optimized

bytes

opcodes

rounds

Ox83
OxcO
Ox01

1

add ax,1

inc ax

Ox40

1

Ox83
Oxed
Ox01

sub ax,1

dec ax

Ox48

Oxb8&
Ox00
Ox00

Mow AX,0

Sub AX,AX

0x29
OxcO

- SHELLCODE

0xb9
Ox02
Ox00
Oxf7
Oxf1

mov CX,2

div CX

shr ax,1

Oxcl
Oxed
0Ox02

0x89
Oxc2
Ox89
Oxd8
0x89
Oxd3

mov dx,ax

mov ax,bx

mov bx,dx

XCHG ax,bx

Ox93

43

Oxa2
0x00
0x00
0x88
0x26
0x01
0x00

mov [0],al

mov([1],ah

mov [0],ax

Oxa3
0x00
0x00

Bit Twiddling Hacks

By Sean Eron Anderson
seander@cs.stanford.edu

¥ avc

How not to be seen

44

¥ avc

45

#1 - Anti Disassembly

Mu-Ha-Ha-Hal!

Original

@start:

Disassembly nov B BB

00000000 89C2 mov dx,ax

00000002 1E push ds

00000003 06 yush es

0000000 5 p short 0x7
0000000 all word far [bx]
0000000 St op es

00000009 EBF5 jmp short 0x0

pop es
jmp @start

lamAramAcham

CGX9

FF
Wi

ha

1F

| never

open

pop ds

¥ Ava

#2 - Usage of unsupported registers (1/2)

* FS is unsupported by engine.

- difference between opcode interpretation
between 8086 and later processors like 80386

- 8086 processor will read it like ‘ES".

push es, ds
move bx, ds

C:\Program Files (x86)\nasm>ndisasm.exe CodeToCompile

00000000 SEE3 mou fs,bx mov fs, bx

46

¥ avc

#2 - Usage of unsupported registers (2/2)

* mov <segment register>, <general purpose
register>

- Binary value: 10001110 mm

Advanced processors 8086 processor

000 - ES . .
001 - CS lgnore first bit
010 -55 mov fs,bx =>
- D5 mov es, bx
100 FS (only 386+)

~ 101 GS (only 386+)

¥ avc

Apocalypse

#3 - Problems with old debuggers Hens

- Targeting flaws that can be found in debuggers.
- Example: debug.exe.
- SP (Stack Pointer) gets really small
value like ‘4’ -> debugger crush. DaySixth:

mov SsSs,sSp
mov [C20],ax
mov s=sp,dx
shl =p,_
shl =p,.
shl =sp, 1
shl =p,.
add =p, [bx]

48 :"np. -

¥ avc

49

#4 - Random bits

Apocalypse

CGX4

* Write multiple INT3 ("CC’ , unsupported opcode)
in places that are not part of the code flow.

- After compilation replace all occurrences of 'CC’
to random bits (Hex Editor/script).

- For example F1, D6 etc.

case (byte)lxCcC: // INT3
throw new IntOpcodeException();

mov es,sSp

int ©/h

add =i,cx
call far [=i]

int =
int =

int =

int
int

int =

it -

0}-<Q<=10018 MTWThF
02.28.08 7:55pm |* *| Q<=
0}-< 1/22...1/2567 omg! <3
lol{u}(_)3=<">=H,07xNacCl
yllambywlaw Q<= “?"0}-<
«=.etc jv¥\o/* #*@%! “--- --- "
aabb O}-< :(|)xXx })i({ SW .+
5th/42nd ° No.2 --->]?

¥ avc

#5 - XORing the code

- Taking survivor’s body and generate two
binary strings - XOR of them will be the body

of the original survivor.

- During runtime every survivor copy his part
to the shared memory and they calculate
XOR of the two parts before it is run by the
survivor.

- Also Smart bombing protection..

50

¥ Aavc

#6 — Copy of a zombie

- Copy zombie into our survivors so others will
pwn a fake zombie instead of the real one.

- Cons: valuable space is wasted.

51

¥ Aavc

#7 — Different Versions

Let them reverse
vulnerable, lame
version

- Getting zombies from the organizers.

’I 199m;9n9 \‘

9€19VI1

> yaanipns |

3rd round (Face-2-face) - 50% 12:01PM

- Top 4 survivors get to the final.
« Final -> Winners!

Keep all your
good stuff for
this version

52

¥ avc

That's what happens to a team that achieves
1st place before the final round..

53

¥ avc 2 —-ASM counts 3 —Probabilities

Detect Relationship 5 > - L >

- g < - g <T

1 - Generating ASM o O o O

instruction trace PUSH O O O PUSH O 0 Q
i PUSH MOV 0 O MOV 0 0 [1/6

5 MOV CALL 0 0 O CALL 0 0 O

4 — Weighted directed graph for code

17 MOV

1 18 CALL
Successor
g 34 MOV
35 CALL 5 - Weighted directed graph for code
AR 2
3 42 MOV score(A, B) = F(Z a;; — bt-_,_,-|)

A 43 CALL b=

‘AVG. Genetic Programming for Reverse Engineering

Mark Harman®, William B. Langdon® and Westley Weimer!
*University College London, CREST centre, UK
TUniversity of Virginia, Virginia, USA

@ darwin8086

Genetic Programming

A lot of work was done on RedCode
« John Perry , Jason Boar, Ryan Colman,
Wilkies Benchmark, Dave Hillis and others.

One effort was done on CoreWars8086.
- Darwin8086.

Gen = Warrior = String 1-512 bytes.
Chromosome

- Bit, Command, Meta-command, Combination,..
Fitness function — Endogeny, Exogeny.

55

Graphical Survivors (Make Love Not War)

BALL

¥ AVG
o Graphical Survivors (Make Love Not War)

2D

- Come on you
Hexy Boy..

- -

nnnnnnn

EC wedding ¢_‘_

—
!

proposal? r

¥ Aavc

Future? Improvements?

Vaf >
S @ﬁ"} V4

FIFA WORLD CUP v

pyr . B16sil KHANACADEMY

'L
ya.,

{:’9!’

e

™~

¥ Aavc

This is how can we add ‘hardware hacking’..

| knew | should
stick to PHP !!!

\
<

imgflip.com y

59

R
1

"ELECTRIC FEEDRACIG

Scrum? Agile?

¥ avc

Q & A / Feedback

60

61

Thank you! Merci!

Contact: Elad.Shapira@avg.com
eladexposed@gmail.com

ACK

- Hugo, Sam, Elizabeth and the ReCon team!!!

- Dr. Oded Margalit, Assaf Nativ, Ange Albertini,
ShiftReduce, SonOfLilit, Danny Leshem,

DualCore and Others..
« AVG, Oren Barad & The team.
- My (brave) Wife & kids.

- 300 Ninjas & Reversers..

mailto:Elad.Shapira@avg.com
mailto:eladexposed@gmail.com

