Performing Open Heart
Surgery on a Furby

Michael Coppola

Recon 2014

Who am |?
° #
e Student at Northeastern University

* CTF every now and then

* http://poppopret.org/

So.. What is this thing?

e Furby 2012

* Animatronic toy made by VOITEE IO (TR AL [
Hasbro (originally Tiger)

* Responds to stimuli) \

D

YOU LIED.

e Speaks “Furbish”, but learns
English over time

* Interacts with other nearby
Furbies

This thing communicates?

* Original
overa#
protoco

e Pulses a

y over IR, now
padBIOS-esque

high-pitched tone

and decodes through the
microphone

* github.com/iafan/Hacksby

> -
BELIEVE

The circuit board

;
-l
o

e
-
Q
®

[
Ljmn
. 1

S

The circuit board

The circuit board

o e éerawn

|dentifying components

Silk screen label

. (serial data)
Package + pins

(8-pin SOIC)

Product markings
(ATMEL 24Cxx)

Yup, it’'s EEPROM

Desoldering components

* Heat gun + tweezers

* Cheap rework station
 Sparkfun $S100

e Solder wick

* Soldering iron blade tip

Interfacing with EEPROM

* |2C protocol

8-lead SOIC
* AO-2 address pins
A0 1 8 VCC
« WP — write protect Al 2 7L WP
A2 3 6 SCL
* SCL —clock GND 4 5 SDA

e SDA — data

Dumped EEPROM

2F
00
05
oOF
00
00
00
00
00
00
00
00
00
00
00
00

64
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
04
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

5A
00
02
18
00
00
00
00
00
00
00
00
00
00
00
00

EB
00
18
18
00
00
00
00
00
00
00
00
00
00
00
00

2F
00
05
oOF
00
00
00
00
00
00
00
00
00
00
00
00

64
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
04
00
00
00
00
00
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

(Likely runtime settings of some sort)

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

5A
00
02
18
00
00
00
00
00
00
00
00
00
00
00
00

EB
00
18
18
00
00
00
00
00
00
00
00
00
00
00
F8

Chip-on-board is annoying

Lots of pins

SPI pad label
(likely MCU) patlabels

” IF || b FLPFI4 e

PR TG

“' \‘ I EELL L ERL L]
-:i

) » Q0

Chip-on-board is annoying

Possibly connected More epoxy
to SPI vias bullshit

|CECLK?
ICESDA?

.. That’s convenient

o+
>
@)
=
o
>
L

(SPI memory)

Interfacing with SPI component

Shift registers — exchange bytes

MISO — Master In Slave Out

e MOSI — Master Out Slave In s# [L]1 8 [

DQ1 []2 7]
e CS— Chip select we 3 6 I
e CLK - Clock Vs []4 5

WP# - Write protect (inv)

HOLD# - Hold (inv)

Interfacing with SPI component

e Arduino is too slow for SPI

 Bus Pirate?
e Adafruit S37

* Chip not recognized by
flashrom

* But spitool seemed to
return some kind of data

Dumping with spitool

e Returned valid looking data but... it would repeat every
0x4000 bytes

* Bought a knockoff Saleae logic analyzer to verify the read
process (S10)

* Probes on MISO, MOSI, CLK, and CS

Debugging with a logic analyzer

@

- Orange - CLK

0x03 READ

Sample capture from boot:

1942730 us

3-byte address

Retrieved data

¥ Measurements

Width: #HEH
Period: #HH#
Frequency: ###
T1: B
P

T2: i
| TL-T2 | = ###

¥ Analyzers

SPI

Options»

Debugging spitool

* spitool sent well-formed SPI commands... just the
wrong ones

* Incremented through the entire 24-bit address
space and wrapped around multiple times

* Back to trying flashrom

M Samples :|@|24 MHz

Dumping with flashrom

 flashrom couldn’t recognize the chip, but maybe it
just doesn’t support it yet

* Sniffed the flashrom PROBE operation:

Options ¥

500 i Start |
+30 ps +40 us +50 ps

wn - MISO FI=TEmms v Measurements

Width: #H##

Period: #HH#

OX9F PINTT p— TP OXFF T - | T L] EJE VA

"1 - Red - MOSI (£ 2.3 H
S =

"~ Analyzers

Ox9F RDID 3-byte JEDEC ID

|dentifying the SPI component

» JEDEC ID: OxC2 0x05 0x16
M=EIG

MACRONIX

InTERNATIONAL CoO., LTD.

MX23L3254

COMMAND DESCRIPTION

(1) Read Identification (RDID)

The RDID instruction is for reading the manufacturer ID of 1-byte and is followed by Device ID of 2-byte. The MXIC
Manufacturer ID is C2h, the memory type ID is 05h as thefirst-byte device ID, and the individual device ID of second-byte

ID is:16h.

The seguence of issuing RDID instructionis: CS# goes low-> sending RDID instruction code -> 24-bits ID data is sent out
on SO ->toend RDID operation which can use CS# to be high at any time during data out. (see Figure 3) When CS#

goes high, the device is at standby stage.

Table of ID Definitions:

RDID

manufacturer D

memory type

memory density

9Fh

C2h

05h

16h

|dentifying the SPI component

* Chip is a Macronix MX23L3254
* 4MB (32Mbit)
* Mask ROM (read only)

* 16 pins, but 8 are disconnected internally

Dumping with flashrom

* Wrote a new config, identifies chip, and dumps
contents successfully

$./flashrom -p buspirate spi:dev=/dev/ttyUSBO -r out.bin
flashrom v0.9.7-rl1767 on Linux 3.8.0-37-generic (x86_64)

flashrom is free software, get the source code at http://www.flashrom.org

Calibrating delay loop... OK.
Found Macronix flash chip "MX23L3254" (4096 kB, SPI) on buspirate spi.

Analyzing the ROM

 4MB binary image
* No results from binwalk
* No strings

* Two sections joined by null padding

Analyzing the ROM header

Number of entries

$ hexdump
00000000
00000010
00000020
00000030
00000040
00000050

00002bbo
00002bco
00002bdo
00002bed

C

rom_dump.

6

Oa

00

00

02
Qa
e2
22
ba

a2
a2
a2
00

4b
5b
b8
dc
7

1b
1f
23
00

00
00
00
00
00

37
37
37
00

00
00
00
00
00

00
00
00
00

bin
00
90
8
eo
c8
co

a2
a2
a2
00

40
4f
5e
€9
el
10

1c
20
24
00

00
00
00
00
(%]
01

37
37
37
00

00 |
00
00
00
00
00

00
00
00
00

56
96
Qe
5e
06

a2
a2
a2
00

43
53
62
cb
ed
26

1d
21
25
00

00
00
00
00
00
o1

37
37
37
00

00 |14
00 44
00 74
00 ac
00 b4
00 24

00 a2
09 a2
00|00
00 00

47
57
67
d3
f2
40

le
22
00
00

00
00
00
00
00
01

37
37
00
00

00
00
00
00
00

00
00
00
00

4 + OxAF6 * 4 = 0x2BDC

Likely offsets into the file

Analyzing the ROM body

$ hexdump -C rom_dump.bin
0000000Y 6 Oa 0O 00|00 40 00 00| |26 43 00 00|14 47 00 00| |..... @..&C...G..|
00004000 |22 03 00 00|80 3e 70 d8 d6 4a al be"e3 7c al ca |"....>p..J...|..]|

00004010 2a f4 5437 c7 2c 35 a5 5b 60 36 c5 e4 22 c1 34 |*.T77.,5.[6..".4]
0x4000 + 4 + 0x322 =0x4326
00004320 6f a7 80 b2 ff 31|ea 03~ 00 00|80 3e 1f 62 1d 18 |o....1..... >.b..|
00004330 3d 32 db 25 5f 9b 8c4d b6 d2 @5 da d5 @8 bl 90 [|=2.% ..M........ |
0x4326 + 4 + Ox3ea = 0x4714
00004710 e9 18 ff 81|ea 03 00 00| 80 3e 38 75 38 c3 84 e4 |......... >8u8. .. |

00004720 3d a5 8a 4d 81 41 a2 3c b9 d2 b9 32 1e ¢c6 53 ¢c5 |=..M.A.<...2..S.]|

ROM format

Header:
[number of offsets] [offset to record] ...

Variable records:
[size of record] [record data] ...

Constant records: 256 bytes

So what kind of data is it?

e Guesses:

* Code? Probably not, weird format
* Audio data? Maybe, the variable size records
* Image data? Maybe, the consistent size records

* Manipulate data on the chip, see how system
behavior changes

* Mask ROM is read-only, so we can’t reprogram it

Let’s fuzz a bit

e The COB mask ROM is...
on a desolderable board

e Remove mask ROM,
replace with similar
read/write flash memory

* Program chip with
fuzzed data, observe

Observing system behavior

* Clobber all records with
‘AAAAAAAAAAAAAAAA’

* No audio
* LCD eyes are messed up

e Point all offsets in header
to same record

* Produces only one sound
* LCD eyes are messed up

* Our guesses were correct

Let’s start with image data

img_362ca2.bmp

img_362fa2.bmp

img_362aa2.bmp

img_362da2.bmp

img_363aa2.bmp

img_363daz.bmp

img_364aa2.bmp
B FU

E

img_364da2.bmp

img_365aa2.bmp

img_365da2.bmp

img_362ba2.bmp

img_362ea2.bmp

“

img_364ba2.bmp

img_364ea2.bmp

img_365baz2.bmp

img_365ea2.bmp

L
E
]

img_364ca2.bmp

img_364fa2.bmp

img_365ca2.bmp

img_365fa2.bmp

e Each record is 256
bytes

* LCD is 64x32 pixels =
256 * 8
e 1 pixel =1 bit

* Need to find mapping
between data <> LCD
pixels

Let’s start with image data

img_362aa2.bmp

img_362da2.bmp

img_364aa2.bmp
i oF
img_364da2.bmp

img_365aa2.bmp

img_365da2.bmp

img_362ba2.bmp

img_362eaz.bmp

img_364ba2.bmp
Y
img_364ea2.bmp

img_365baz.bmp

img_365eaz.bmp

img_362caz.bmp

img_362fa2.bmp

img_363faz.bmp

img_364ca2.bmp

img_364fa2.bmp

img_365caz2.bmp

img_365fa2.bmp

* Flashed unique
patterns and recorded
pixel locations, but took
way too long

e Got help from Olivier
Galibert (a MAME dev),
derived x-y offsets

Arbitrary control over the LCD

What about the audio data”

e Can we craft arbitrary audio too?

* Tried (mostly) every format/codec could think of
* No idea what it is

* Common first two bytes: 0x80 Ox3e

* Some code / more info would be nice

Microcontroller?

* No idea what it is, or which architecture
e Possible to read code off it?
* Traced pads to/from

* No JTAG, but seriously... WTF is ICE?
* Google mentions something about “Generalplus”

* Enough with the guessing...

BOIL EVERYTHING
IN ACID

Chip decapsulation
* (aka chip “decapping”)
* Exposes die for analysis

* Many creative techniques
* Mechanical
* Thermal
e Chemical

* Live analysis possible

siliconprOn.org

Nitric acid

HNO,

Concentrated (68%)
* Requires high temp
* Degrades bond pads

Fuming (>86%)
* Reacts at room temp
* Permits live decap

Really nasty stuff

Nitric Acid 70%
(Laboratory Grade)

HNO3 F. W. 63.01

CAS 7697-37-2

siliconprOn.org

Nitric acid

Requires a fume hood
* Cu(s)+4 HNO;, (aq) = Cu(NO,), (ag) + 2 H,0 () + 2 NO, (g)
* a.k.a. you're going to be an unhappy camper

Requires proper disposal

Reasonable to obtain concentrated acid

Nobody’s going to sell you fuming acid

You’ll probably be put on a watch list

Sulfuric acid

* H,S0,

* Commercial drain cleaner
* Produces black sludge

e Leaves bond wires intact

* Also really nasty stuff

siliconprOn.org

Decapping with nitric acid

* |solate samples as
much as possible

e 70% nitric acid
e Heat to 80°C

* 5—-60 minutes

Recovering samples

* Decant + soft tweezers

* Rinse with deionized
water, then acetone

* No, not nail polish
remover

 Ethanol also works

Optical microscope

* Regular bio microscopes won’t work
* Need illumination from above

* Stereo / inverted / metallurgical microscope
* Olympus BH(2) series highly recommended

* Likely able to see lower metal layers

* Image quality highly dependent on camera and
objectives

4+
O
Q0o
Q
=
D)
O
>~
4+
qu
-
=
L
=
=
V4
S
=

eu®

w0
oarl)
mmm. s

Scanning Electron Microscope

* Provides the highest resolution image at insane
zoom levels

* Black & white image only

* Big problem: can only view topography of
passivation layer (overglass)

Scanning Electron Microscope

B W R

Scanning Electron Microscope

large35 5.0kV 24.5mm x700 SE(L) 12/9/2013

GFI392

i |Seamh|

o NO info On Google i By Device | ' By Report Title

Hasbro
GFl392
Publish Date: Oct-12

GFI392 is Unclassified found in Hasbro 505FBBEQ
(Furby)

* Might be rebranded

* Chipworks decapped
this chip as well e P ————

Hasbro GFI392_die Die photo UsD 200 + ADD TO CART

Instant
Download G

Don't see what you need here? Request a custom analysis. Contact Us

What about Generalplus?

 Company in China, mass produces low-cost ICs
 Commonly found in video games, toys (Tamagotchi)

« Same as Natalie, browsed datasheets until...

Matching pad layout

wm m [m
onm m = m
m | I I [an] 1
m M0 - (&) [, ¥ 1 =1
o - voo
m ‘W= OnFza omew 5 [P
Led = f=] =
I odNmMmHOOH - oo << 0O NNEHOsZZooZ0 m T e
(=] ﬁ{{{??'\/'\ll’ﬂﬁﬁq 14‘ﬂﬂnﬂnl—'hl—'l—‘hl)\}l)Hl)qﬁqﬁ"’!ﬁ
LU o coocooomn?analdunvan <c<<<cszocasninnee?a P08 oo,
= = = »—«H>—<>—1xxxxz:»}>2:—«>—:—«>>>uuuu:»:=<<:szzzme::eciq<c> zzzzz
B B 60 pdiddidbo b ot et e oo oo o e porppfoaoe o] SIS
NC
B I0A4[
T0A B[
FATEST IDAG([
FARESETE LOA 7 e
BlICcESDA COMO[ea
HdICECLK COM1 s
B{XEMON COME el
F4SEGQ :Uh‘:i
FSEG1 o
HWSEG2 - o
FiSEG 3 COMB[H
ey com7 [
SEGS CoMEB[Y
- o comMafs
- caoM1of
fHSEGCE A CoMaTpe
F{SEG S 1 Jay coMizle
ESEEIC ; L ~ ~ [:CIMizi
HSEG11 COW14[al
PSEG12 CoM15|[s]
F{SEG13 COM1E[
{SEG14 comMiz
F{SEG1A :]MIE
F{SEG1E coM1s
EG17 caKzo
Fcig R
EG18 CoM22z[w
FdSEGC2D CoMez3fm
F{SEGZ21 COM2A4l[
sEce? caMezsle
F{SEC?Z 3 COMZB|[s)
F{SECZz4 camerl)
HsEczs CaMzgls
HSEC?6 comzals
[MSEG27 CaM3
EG2E8 COM
FiSECZ 3 VDDIO-
PdSEG3IO VS5 10/
PiSEG31
4yDDID_33
[0 o)) e o o 2 3 3 0 3 e |
(=] MNMYT OO~ OO0 -EMMYTOOFRONOENNMTOOAROMOCANMNMTINWeSOE O e m
J>—< MM MMM MMM ST <7 ST ST <T ST <7 ST <T ST L0 0L U0 L0 L0 L0 L0 L0 L0 00 (0 00 0 (0 W0 L0 0 0 w0 e e e e
w [Py PN P I O P PN P P P P TP P P P P P P P P P PR P P P P P P P Iy P I P P O
- [Splia Tl spiigipiaRisRigRiaRiaNiaR i RianiaRiaNipRiaNiaNiaR NN i RiaRiaNipRipRipNipRiaRipNipRishipNiaRtaiyNiaNiaispiaip]

GPL169256A

e 16-bit u’'nSP MCU
e LCD controller
e 256K mask ROM

* |ICE debug interface
* Tried to get a debug probe
* They didn’t fall for it.
* Probably disabled anyways

GPL169256A

16-bit LCD Controller with 2368 Dots
Driver

MCU audio format support

Datasheet lists supported
audio formats

Google everything

Found a GitHub repo with
compiled u’nSP libraries

Matched byte pattern
« SACM_DVR1800

6.16. Audio Algorithm

The following speech types can be used in GPL169256A: PCM,
LOG PCM, SACM_A1600, SACM_1601, SACM_S200,
SACM_S480, SACM_S530, SACM_S720, SACM_S320,
SACM_S880, SACM_DVR1800, SACM_DVR520,
SACM_DVR1600, SACM_DVR4800, and SACM_DVR3200. For
melody synthesis, the GPL169256A provides a SACM_MS01 (FM
synthesizer) and SACM_MS02 wave-table synthesizer.

SACM DVR1800

e u'nSP library created with unSPIDE LibMaker

e Library format reverse engineered by David Carne
* Tools to unpack object files
* |IDA Pro loader with symbol support
 http://github.com/davidcarne/unsp_tools

SACM_DVR1S00_IM BLOCK:00000DAD F_DVERE1EB00_Decode:

SACM _DVR1800_IM BLOCK:00000DAD fir_mov on
SACM_DVE1800_IM BLOCK:00000DAE rl = [$15AR]
SACM_DVR1800_IM BLOCK:00000DED r2 = 51658

SACM_DVR1800_IM BLOCK:00000DEZ r3
SACM_DVR1B00_IM |
SACM_DVR1800_IM BLOCK:00000DB4 loc_DB4:

SACM_DVR1800_IM BLOCK:00000DE4 rd
SARCM_DVR1B00_

IM_BLOCK:00000DE4

IM_BLOCK:00000DES [r2++] = rd
SACM_DVR1800_TM_BLOCK:00000DB6 #1 = A
SACM_DVR1800_IM_ELOCK:00000DB7 ine loc_ DE4

SACM_DVE1E00_IM BLOCK:00000DBR [54422]1 = 3
SACM _DVR1800_IM BLOCK:00000DBA rl = 516358

G+ GPYO030x audio driver

VSS

VSS

(0,0)

SPN | |
SPP | 2
- 5
INN ACIN

VDD

VDD

CE

VREF

Unknown chip on daughterboard

* GHH393

e Couldn’t match pad
layout to datasheet

* Likely still Generalplus

 Microcontroller?
* Internal clock
* Connected to peripherals

 Memory chip?
* Huge memory banks
* Not much logic

Delayering the chip

Submerge chip in
hydrofluoric acid (3%)

e Commercial rust remover

. Metal 1 NG
Heated in water bath for :

1.5 minute intervals
* Limits temperature to 100°C Poly

* Remove overglass + layers

* 1 metal, 1 poly, substrate
(active layer)

Wikipedia

Close up analysis

TODO.txt

e Extract ROM from daughterboard microcontroller
* Explore programming-related pads

e Extract ROM from main microcontroller
* Delayer chip - optical reading?
* Code exec via power glitching, or fuzzed memory chip?

* Decode audio data
* Reverse engineer u’'nSP implementation

 Perform VR on extracted firmware
* Delicious Furby Oday

github.com/mncoppola/Furby-2012/

Thanks

 Andrew Zonenberg
* Olivier Galibert

* David Carne

* Segher Boessenkool
* Dr. Geoffrey Davies
* Dr. William Fowle

* Dr. Chuck DiMarzio
* Dr. Wil Robertson

* Kaylie DeHart

* Molly White

Questions?

@ mncoppola
poppopret.org

