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Who am |?
° #
e Student at Northeastern University

* CTF every now and then

* http://poppopret.org/



So.. What is this thing?

e Furby 2012

* Animatronic toy made by VOITEE IO (TR AL [
Hasbro (originally Tiger)

* Responds to stimuli ) \

D

YOU LIED.

e Speaks “Furbish”, but learns
English over time

* Interacts with other nearby
Furbies



This thing communicates?

* Original
overa#
protoco

e Pulses a

y over IR, now
padBIOS-esque

high-pitched tone

and decodes through the
microphone

* github.com/iafan/Hacksby
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The circuit board
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The circuit board




The circuit board
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|dentifying components

Silk screen label

. (serial data)
Package + pins

(8-pin SOIC)

Product markings
(ATMEL 24Cxx)

Yup, it’'s EEPROM



Desoldering components

* Heat gun + tweezers

* Cheap rework station
 Sparkfun $S100

e Solder wick

* Soldering iron blade tip



Interfacing with EEPROM

* |2C protocol

8-lead SOIC
* AO-2 address pins
A0 1 8 VCC
« WP — write protect Al 2 7L WP
A2 3 6 SCL
* SCL —clock GND 4 5 SDA

e SDA — data



Dumped EEPROM
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(Likely runtime settings of some sort)
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Chip-on-board is annoying

Lots of pins

SPI pad label
(likely MCU) patlabels
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Chip-on-board is annoying

Possibly connected More epoxy
to SPI vias bullshit

|CECLK?
ICESDA?




.. That’s convenient
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(SPI memory)




Interfacing with SPI component

Shift registers — exchange bytes

MISO — Master In Slave Out

e MOSI — Master Out Slave In s# [L]1 8 [

DQ1 []2 7 ]
e CS— Chip select we 3 6 I
e CLK - Clock Vs [ ]4 5

WP# - Write protect (inv)

HOLD# - Hold (inv)



Interfacing with SPI component

e Arduino is too slow for SPI

 Bus Pirate?
e Adafruit S37

* Chip not recognized by
flashrom

* But spitool seemed to
return some kind of data




Dumping with spitool

e Returned valid looking data but... it would repeat every
0x4000 bytes

* Bought a knockoff Saleae logic analyzer to verify the read
process (S10)

* Probes on MISO, MOSI, CLK, and CS




Debugging with a logic analyzer

@

- Orange - CLK

0x03 READ

Sample capture from boot:

1942730 us

3-byte address

Retrieved data

¥ Measurements

Width: #HEH
Period: #HH#
Frequency: ###
T1: B
P

T2: i
| TL-T2 | = ###

¥ Analyzers

SPI

Options»




Debugging spitool

* spitool sent well-formed SPI commands... just the
wrong ones

* Incremented through the entire 24-bit address
space and wrapped around multiple times

* Back to trying flashrom



M Samples :|@|24 MHz

Dumping with flashrom

 flashrom couldn’t recognize the chip, but maybe it
just doesn’t support it yet

* Sniffed the flashrom PROBE operation:

Options ¥

500 i Start |
+30 ps +40 us +50 ps

wn - MISO  FI=TEmms v Measurements

Width: #H##

Period: #HH#

OX9F PINTT p— TP OXFF T - | T L] EJE VA

"1 - Red - MOSI (£ 2.3 H
S =

"~ Analyzers

Ox9F RDID 3-byte JEDEC ID



|dentifying the SPI component

» JEDEC ID: OxC2 0x05 0x16
M=EIG

MACRONIX

InTERNATIONAL CoO., LTD.

MX23L3254

COMMAND DESCRIPTION

(1) Read Identification (RDID)

The RDID instruction is for reading the manufacturer ID of 1-byte and is followed by Device ID of 2-byte. The MXIC
Manufacturer ID is C2h, the memory type ID is 05h as thefirst-byte device ID, and the individual device ID of second-byte

ID is:16h.

The seguence of issuing RDID instructionis: CS# goes low-> sending RDID instruction code -> 24-bits ID data is sent out
on SO ->toend RDID operation which can use CS# to be high at any time during data out. (see Figure 3) When CS#

goes high, the device is at standby stage.

Table of ID Definitions:

RDID

manufacturer D

memory type

memory density

9Fh

C2h

05h

16h




|dentifying the SPI component

* Chip is a Macronix MX23L3254
* 4MB (32Mbit)
* Mask ROM (read only)

* 16 pins, but 8 are disconnected internally



Dumping with flashrom

* Wrote a new config, identifies chip, and dumps
contents successfully

$ ./flashrom -p buspirate spi:dev=/dev/ttyUSBO -r out.bin
flashrom v0.9.7-rl1767 on Linux 3.8.0-37-generic (x86_64)

flashrom is free software, get the source code at http://www.flashrom.org

Calibrating delay loop... OK.
Found Macronix flash chip "MX23L3254" (4096 kB, SPI) on buspirate spi.



Analyzing the ROM

 4MB binary image
* No results from binwalk
* No strings

* Two sections joined by null padding



Analyzing the ROM header

Number of entries

$ hexdump
00000000
00000010
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00002bbo
00002bco
00002bdo
00002bed

C

rom_dump.
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4 + OxAF6 * 4 = 0x2BDC

Likely offsets into the file



Analyzing the ROM body

$ hexdump -C rom_dump.bin
0000000Y 6 Oa 0O 00|00 40 00 00| |26 43 00 00|14 47 00 00| |..... @..&C...G..|
00004000 |22 03 00 00|80 3e 70 d8 d6 4a al be"e3 7c al ca |"....>p..J...|..]|

00004010 2a f4 5437 c7 2c 35 a5 5b 60 36 c5 e4 22 c1 34 |*.T77.,5.[ 6..".4]
0x4000 + 4 + 0x322 =0x4326
00004320 6f a7 80 b2 ff 31|ea 03~ 00 00|80 3e 1f 62 1d 18 |o....1..... >.b..|
00004330 3d 32 db 25 5f 9b 8c4d b6 d2 @5 da d5 @8 bl 90 [|=2.% ..M........ |
0x4326 + 4 + Ox3ea = 0x4714
00004710 e9 18 ff 81|ea 03 00 00| 80 3e 38 75 38 c3 84 e4 |......... >8u8. .. |

00004720 3d a5 8a 4d 81 41 a2 3c b9 d2 b9 32 1e ¢c6 53 ¢c5 |=..M.A.<...2..S.]|



ROM format

Header:
[number of offsets] [offset to record] ...

Variable records:
[size of record] [record data] ...

Constant records: 256 bytes



So what kind of data is it?

e Guesses:

* Code? Probably not, weird format
* Audio data? Maybe, the variable size records
* Image data? Maybe, the consistent size records

* Manipulate data on the chip, see how system
behavior changes

* Mask ROM is read-only, so we can’t reprogram it



Let’s fuzz a bit

e The COB mask ROM is...
on a desolderable board

e Remove mask ROM,
replace with similar
read/write flash memory

* Program chip with
fuzzed data, observe




Observing system behavior

* Clobber all records with
‘AAAAAAAAAAAAAAAA’

* No audio
* LCD eyes are messed up

e Point all offsets in header
to same record

* Produces only one sound
* LCD eyes are messed up

* Our guesses were correct




Let’s start with image data

img_362ca2.bmp

img_362fa2.bmp

img_362aa2.bmp

img_362da2.bmp

img_363aa2.bmp

img_363daz.bmp

img_364aa2.bmp
B FU

E

img_364da2.bmp

img_365aa2.bmp

img_365da2.bmp

img_362ba2.bmp

img_362ea2.bmp

“

img_364ba2.bmp

img_364ea2.bmp

img_365baz2.bmp

img_365ea2.bmp

L
E
]

img_364ca2.bmp

img_364fa2.bmp

img_365ca2.bmp

img_365fa2.bmp

e Each record is 256
bytes

* LCD is 64x32 pixels =
256 * 8
e 1 pixel =1 bit

* Need to find mapping
between data <> LCD
pixels



Let’s start with image data

img_362aa2.bmp

img_362da2.bmp

img_364aa2.bmp
i oF
img_364da2.bmp

img_365aa2.bmp

img_365da2.bmp

img_362ba2.bmp

img_362eaz.bmp

img_364ba2.bmp
Y
img_364ea2.bmp

img_365baz.bmp

img_365eaz.bmp

img_362caz.bmp

img_362fa2.bmp

img_363faz.bmp

img_364ca2.bmp

img_364fa2.bmp

img_365caz2.bmp

img_365fa2.bmp

* Flashed unique
patterns and recorded
pixel locations, but took
way too long

e Got help from Olivier
Galibert (a MAME dev),
derived x-y offsets



Arbitrary control over the LCD




What about the audio data”

e Can we craft arbitrary audio too?

* Tried (mostly) every format/codec could think of
* No idea what it is

* Common first two bytes: 0x80 Ox3e

* Some code / more info would be nice



Microcontroller?

* No idea what it is, or which architecture
e Possible to read code off it?
* Traced pads to/from

* No JTAG, but seriously... WTF is ICE?
* Google mentions something about “Generalplus”

* Enough with the guessing...



BOIL EVERYTHING
IN ACID



Chip decapsulation
* (aka chip “decapping”)
* Exposes die for analysis

* Many creative techniques
* Mechanical
* Thermal
e Chemical

* Live analysis possible

siliconprOn.org



Nitric acid

HNO,

Concentrated (68%)
* Requires high temp
* Degrades bond pads

Fuming (>86%)
* Reacts at room temp
* Permits live decap

Really nasty stuff

Nitric Acid 70%
(Laboratory Grade)

HNO3 F. W. 63.01

CAS 7697-37-2

siliconprOn.org



Nitric acid

Requires a fume hood
* Cu(s)+4 HNO;, (aq) = Cu(NO,), (ag) + 2 H,0 () + 2 NO, (g)
* a.k.a. you're going to be an unhappy camper

Requires proper disposal

Reasonable to obtain concentrated acid

Nobody’s going to sell you fuming acid

You’ll probably be put on a watch list



Sulfuric acid

* H,S0,

* Commercial drain cleaner
* Produces black sludge

e Leaves bond wires intact

* Also really nasty stuff

siliconprOn.org



Decapping with nitric acid

* |solate samples as
much as possible

e 70% nitric acid
e Heat to 80°C

* 5—-60 minutes




Recovering samples

* Decant + soft tweezers

* Rinse with deionized
water, then acetone

* No, not nail polish
remover

 Ethanol also works




Optical microscope

* Regular bio microscopes won’t work
* Need illumination from above

* Stereo / inverted / metallurgical microscope
* Olympus BH(2) series highly recommended

* Likely able to see lower metal layers

* Image quality highly dependent on camera and
objectives
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Scanning Electron Microscope

* Provides the highest resolution image at insane
zoom levels

* Black & white image only

* Big problem: can only view topography of
passivation layer (overglass)



Scanning Electron Microscope

B W R




Scanning Electron Microscope

large35 5.0kV 24.5mm x700 SE(L) 12/9/2013




GFI392

i |Seamh|

o NO info On Google i By Device | ' By Report Title

Hasbro
GFl392
Publish Date: Oct-12

GFI392 is Unclassified found in Hasbro 505FBBEQ
(Furby)

* Might be rebranded

* Chipworks decapped
this chip as well e P ————

Hasbro GFI392_die Die photo UsD 200 + ADD TO CART

Instant
Download G

Don't see what you need here? Request a custom analysis. Contact Us



What about Generalplus?

 Company in China, mass produces low-cost ICs
 Commonly found in video games, toys (Tamagotchi)

« Same as Natalie, browsed datasheets until...



Matching pad layout
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GPL169256A

e 16-bit u’'nSP MCU
e LCD controller
e 256K mask ROM

* |ICE debug interface
* Tried to get a debug probe
* They didn’t fall for it.
* Probably disabled anyways

GPL169256A

16-bit LCD Controller with 2368 Dots
Driver




MCU audio format support

Datasheet lists supported
audio formats

Google everything

Found a GitHub repo with
compiled u’nSP libraries

Matched byte pattern
« SACM_DVR1800

6.16. Audio Algorithm

The following speech types can be used in GPL169256A: PCM,
LOG PCM, SACM_A1600, SACM_1601, SACM_S200,
SACM_S480, SACM_S530, SACM_S720, SACM_S320,
SACM_S880, SACM_DVR1800, SACM_DVR520,
SACM_DVR1600, SACM_DVR4800, and SACM_DVR3200. For
melody synthesis, the GPL169256A provides a SACM_MS01 (FM
synthesizer) and SACM_MS02 wave-table synthesizer.



SACM DVR1800

e u'nSP library created with unSPIDE LibMaker

e Library format reverse engineered by David Carne
* Tools to unpack object files
* |IDA Pro loader with symbol support
 http://github.com/davidcarne/unsp_tools

SACM_DVR1S00_IM BLOCK:00000DAD F_DVERE1EB00_Decode:

SACM _DVR1800_IM BLOCK:00000DAD fir_mov on
SACM_DVE1800_IM BLOCK:00000DAE rl = [$15AR]
SACM_DVR1800_IM BLOCK:00000DED r2 = 51658

SACM_DVR1800_IM BLOCK:00000DEZ r3
SACM_DVR1B00_IM |
SACM_DVR1800_IM BLOCK:00000DB4 loc_DB4:

SACM_DVR1800_IM BLOCK:00000DE4 rd
SARCM_DVR1B00_

IM_BLOCK:00000DE4

IM_BLOCK:00000DES [r2++] = rd
SACM_DVR1800_TM_BLOCK:00000DB6 #1 = A
SACM_DVR1800_IM_ELOCK:00000DB7 ine loc_ DE4

SACM_DVE1E00_IM BLOCK:00000DBR [54422]1 = 3
SACM _DVR1800_IM BLOCK:00000DBA rl = 516358



G+ GPYO030x audio driver

VSS

VSS

(0,0)

SPN | |
SPP | 2
- 5
INN ACIN

VDD

VDD

CE

VREF



Unknown chip on daughterboard

* GHH393

e Couldn’t match pad
layout to datasheet

* Likely still Generalplus

 Microcontroller?
* Internal clock
* Connected to peripherals

 Memory chip?
* Huge memory banks
* Not much logic




Delayering the chip

Submerge chip in
hydrofluoric acid (3%)

e Commercial rust remover

. Metal 1 NG
Heated in water bath for :

1.5 minute intervals
* Limits temperature to 100°C Poly

* Remove overglass + layers

* 1 metal, 1 poly, substrate
(active layer)

Wikipedia



Close up analysis



TODO.txt

e Extract ROM from daughterboard microcontroller
* Explore programming-related pads

e Extract ROM from main microcontroller
* Delayer chip - optical reading?
* Code exec via power glitching, or fuzzed memory chip?

* Decode audio data
* Reverse engineer u’'nSP implementation

 Perform VR on extracted firmware
* Delicious Furby Oday



github.com/mncoppola/Furby-2012/
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Questions?

@ mncoppola
poppopret.org



