
Exploring the impact of a hard
drive backdoor

Jonas Zaddach
<zaddach@eurecom.fr>

Outline

• Introduction
• Firmware reverse engineering
• Backdoor injection
• Remote access
• Discussion
• Conclusion

About myself

• PhD Candidate on the topic of Embedded
Firmwares’ Security at EURECOM

• My website (Publications, etc)
• Current work

• Avatar – Firmware emulation
• Firmware survey project

http://www.eurecom.fr
http://www.s3.eurecom.fr/%7Ezaddach/index.html

Acknowledgements

• Thanks to my Advisor Davide Balzarotti and
co-advisor Aurélien Francillon for enabling me
to do research!

• Thanks to Travis Goodspeed for getting me
started on hacking this HDD

• Thanks to all the authors (Anil, Travis,
Moitrayee, Davide, Aurélien, Erik, Ioannis) of
our paper for this great research

http://www.s3.eurecom.fr/docs/acsac13_zaddach.pdf

Motivation

• A computer of computers: All code is part of
the TCB

Touchpad
controller

Display
controller

Hard disk

Keyboard
controller

Northbridge
chipset

GPU

http://www.blogcdn.com/de.engadget.com/media/2011/08/samsungnotebookserie7gamer2.jpg

Motivation

• Why a firmware attack?
• Firmware infections are very hard to find and even

harder to remove

• Why the hard drive?
• Almost all persistent information is stored on hard

drives

• How can such a backdoor be accessed?
• Shown in this presentation

Goals

• Compromise the firmware of a COTS disk
• Design a backdoor to exfiltrate data
• Evaluate performance and impact
• Discuss countermeasures

Similar work

• Similar hacking was presented by sprite_tm
(Jeroen Domburg) at OHM2013
• Different HDD brand
• Using JTAG debugging
• More information here:

http://spritesmods.com/?art=hddhack

http://spritesmods.com/?art=hddhack&page=1

Similar work

• But we were
both not the
first to try
this idea …

http://upload.wikimedia.org/wikipedia/commons/1/1a/NSA_IRATEMONK.jpg

Historical development

• IBM 350: Announced in 1956

http://www-03.ibm.com/ibm/history/exhibits/storage/images/PH0350A.jpg

Introduction of IDE drives

• Integrated Disk Electronics simplifies HDD
attachment
• Disk controller steers motors and analog data

stream coding
• PC speaks to drive over AT attachment protocol

http://www.escotal.com/Images/computer/hardrivegeometry.jpg http://www.harddriverecovery.org/blog/wp-content/uploads/2011/06/seagatedrive.jpg

Typical HDD firmware

• Runs on a microprocessor (ARM, MIPS, …)
• Can be reprogrammed
• Is stored in flash and on disk
• Has several tasks

• Decode ATA protocol
• Translate Logical Block Addressing (LBA) to disk

geometry (Cylinder Head Sector – CHS)
• Coordinate other electronics (Motors, data stream

decoding)

Outline

• Introduction
• Firmware reverse engineering
• Backdoor injection
• Remote access
• Discussion
• Conclusion

Second Prototype

HDD

USB-SATA
bridge

USB
Controlled
Switch

Experimental setup

HDD Switchable
power

USB-SATA
bridge

USB-Serial
converter

Controlling
PC

Accessing the firmware

• Firmware update files are in proprietary
format
• not straightforward to reverse

• JTAG on the PCB seems to be disabled
• OpenOCD cannot read memory

• Serial port on master-slave jumpers shows
diagnostic menu

Diagnostic firmware menu

• Diagnostic menu is accessed by pressing
CTRL-Z in the serial terminal1

Online ESC: Rev 0011.0000, Flash, Abort Looping Command or Batch File

Online '?': Rev 0011.0000, Flash, Display Diagnostic Buffer Information

Online ^Z: Rev 0011.0000, Flash, Enable ASCII Diagnostic Serial Port Mode

All Levels '+': Rev 0012.0000, Flash, Peek Memory Byte,
+[AddrHi],[AddrLo],[NotUsed],[NumBytes]

All Levels '-': Rev 0012.0000, Flash, Peek Memory Word, -
[AddrHi],[AddrLo],[NotUsed],[NumBytes]

All Levels '=': Rev 0011.0002, Flash, Poke Memory Byte,
=[AddrHi],[AddrLo],[Data],[Opts]

Online ^C: Rev 0011.0000, Flash, Firmware Reset

1 http://forum.hddguru.com/viewtopic.php?t=11926&start=

Dumping the firmware

• Python script can extract firmware
• Accessing invalid addresses crashes firmware
• Neighborly thanks to Travis Goodspeed for

dumping the firmware

• Code execution not possible
• Code is write-protected, cannot insert hook into

execution flow

Bootloader Prompt

ASCII Diag mode

F3 T>

Spinning Down

Spin Down Complete

Elapsed Time 6.012 secs

Delaying 5000 msec

Jumping to Power On Reset�
SEA-3 Yeti Boot ROM 2.0 (12/06/2007)

Copyright Seagate 2007

Boot Cmds:

 DS

 AP <addr>

 WT <data>

 RD

 GO

 TE

 BR <divisor>

 BT

 WW

?

 RET

>

• CTRL-C reboots and displays bootloader

Inject code

• Bootloader menu commands allow code
execution
• AP sets address pointer
• WR writes byte to address pointer
• RD reads byte from address pointer
• GO executes code at address pointer

• Getc and putc functions are known from
disassembly

• With some trial and error a self-developed tiny
GDB stub (2.6k) can be injected

GDB Stub

• Uses a serial interface and a simple text-based
protocol
• 6 primitives are enough to give debugging support

with software breakpoints:
Read memory, write memory, read registers, write
registers, continue and get signal

• GDB’s stub implementation is not for ARM and
too big (for my purpose)

Reconaissance

• Gather information on processor
• CPUID  Arm966
• Debug unit  Disabled
• Caches  No caching

• Reconstruct memory map
• Some memory regions are known from the FW dump
• IO region is known from disassembling serial port

driver

• Dump flash memory contents

Memory Map

Memory Range Type

0x00000000 – 0x00008000 Code SRAM
0x00100000 – 0x00120000 ROM
0x00200000 – 0x00400000 Code DRAM
0x04000000 – 0x04004000 Data SRAM
0x06000000 – 0x07000000 Data DRAM
0x40000000 – 0x50000000 IO

Overview of the boot process

• ROM bootloader
• Loads next stage from flash

• Flash bootloader
• “Stripped-down” firmware
• Enables DRAM and sets up memory protection
• Loads main FW from disk

• Main firmware
• Handles normal disk operation

• Overlays
• Loaded by main FW, e.g., for the diagnostic menu

Keeping control

• Software debugging is fragile
• Overwriting exception vectors removes debugger

handler
• Memory write protection prevents setting

breakpoints
• Memory layout changes necessitate moving

debugger stub
• No external debugging interrupt

• Emulated with breakpoint in serial receive
interrupt

Analysis woes

• Analyzing the firmware turned out to be quite
hard …
• Almost no strings
• No known APIs
• Software debugger cannot set watchpoints

• Data tracing is hard

• Firmware excessively uses of global variables
• Lots of function pointer tables

Understanding the OS

• Custom real-time OS
• Simple scheduler

• Fixed number of tasks
• Event-based

• Tasks are woken depending on accepted events mask
• Preemptive

• Tasks are changed after interrupts
• Cooperative

• Task yields when generating an event

Reversing ATA command handling

• Experiment setting
• HDD connected through USB-SATA bridge
• Bridge controlled by Python libusb script
• Cypress bridge chip has special mode for sending

raw ATA commands :)
• (Also Linux kernel does not like devices that do

not respect SATA timeouts)

Tasks involved in reading

• ATA read command received by HDD
• Tasks process command by passing events

• Execution traces can now be recorded with
AVATAR

Interrupt
handler SATA task Cache

task

Read-
write
task

http://www.s3.eurecom.fr/tools/avatar/

Outline

• Introduction
• Firmware reverse engineering
• Backdoor injection
• Remote access
• Discussion
• Conclusion

Hooking the backdoor

• Data can be modified anywhere between
reception and R/W task
• This backdoor hooks between cache and

read/write task
• Checksums protect data integrity per block

• 16-bit checksum
• 32-bit checksum
• Checksumming code is contained in

firmware …

Simple solution

• First hook is in write path and scans block for
magic commands
• If a command is detected, LBA to read is stored in

memory
• Second hook is in read path and checks if

• Backdoor has stored LBA to read
• Read LBA is a trigger LBA
 Replace LBA to read with the one from the

backdoor

Interfacing the backdoor

Backdoor: Read
LBA 0x1234

ATA cmd: Write
LBA 0x4567

Backdoor detects
command

Backdoor copies
sector at LBA
0x1234 to 0x4567

Content of LBA
0x1234

ATA reply: Read
LBA 0x4567
ATA cmd: Read LBA
0x4567

Making the backdoor permanent

• Firmware update file format reverse-
engineered

• HDParm or custom driver could send firmware
update command

• Once installed, a malicious FW
can refuse firmware updates

Outline

• Introduction
• Firmware reverse engineering
• Backdoor injection
• Remote access
• Conclusion

Scenario description

Handling misalignment

M | C | .. | .. | .. | .. |
One block

M | C | ..
|

 Misaligned

.. | .. | ..
|

Handling misalignment

One block

M | M | M | C
|

M | M | M | C | M | M
|

 M | M | M | C | M | M
|

M | C | M | M | M | M
|

.. | .. |

Exfiltration tweaks

• Make data robust
• ASCII-Armor (base64)

• Caching
• Wait
• Create dummy traffic

Experiment setting

PHP-based
forum

Exfiltration of /etc/shadow

• HDD filesystem is “mounted” in Python
• Exfiltrate /etc/shadow in nine “queries”

• Read MBR from block 0
• Read superblock if ext3 partition
• …

• Total time < 1 minute

Outline

• Introduction
• Firmware reverse engineering
• Backdoor injection
• Remote access
• Discussion
• Conclusion

Limitations

• Backdoor commands need to pass the block
cache
• In Linux, blocks are cached in memory and only

evicted to the HDD when necessary
• Limits maximum throughput

• In a RAID, HDD has only a partial view of the
stored data

• Software encryption defeats the backdoor

Addressing limitations

• Infect host code by
• Injecting code into Master Boot Record
• Detecting and infecting a boot loader (ntldr, Grub,

…)
• Detecting DLL loads and infecting DLLs

• Alleviates software encryption, low
throughput

• Less stealthy

Impact

HDD vendors market share Q3 2011

http://news.techeye.net/business/hdd-business-to-become-mexican-standoff

Impact

HDD vendors market share 2012 (projected)

http://news.techeye.net/business/hdd-business-to-become-mexican-standoff

My work
Sprite_tm’s

work

Specific countermeasures

• Backdoor detection
• Host level: Sporadically read blocks from HDD after

write and verify integrity
• Network level: Detect backdoor commands in network

packets
• Data hiding

• Software HDD encryption
• System integrity

• Verify that operating system has not been tampered
with

General countermeasures

• Firmware integrity
• Sign firmware
• Start from a root of trust (e.g., ROM bootloader)
Does not help against code injection/ROP
Difficult to realize with plugin model

• Remote attestation
• Prove that firmware has not been modified

General countermeasures

• Better firmware analysis tools
• Static (binary) analysis
• Dynamic analysis
• Emulation

• Establish minimum security standards
• E.g., scanner for “worst practices”

Outline

• Introduction
• Firmware reverse engineering
• Backdoor injection
• Remote access
• Discussion
• Conclusion

Conclusion

• Presented a firmware backdoor attack
• Which is able to exfiltrate data
• No modifications to PC code necessary

• Attack is almost impossible to detect
• Backdoor command needs to be observed or

known
• Make sure no one tampers your HDD!

• Supply chain
• Root access to PC

Questions?

Reversing the firmware file format

• Reverse the update function
• Find flash dump and memory dumps in

firmware update file
• File is organized in sections

• First stage bootloader
• Flash image
• Main firmware
• Overlays
• Servo controller 8051 code :)

Reversing the firmware file format

• Each section can again contain chunks
• Flash data chunk
• Memory chunk

• I will clean the script on the flight back and
post it on my website

	Exploring the impact of a hard drive backdoor
	Outline
	About myself
	Acknowledgements
	Motivation
	Motivation
	Goals
	Similar work
	Similar work
	Historical development
	Introduction of IDE drives
	Typical HDD firmware
	Outline
	Second Prototype
	Experimental setup
	Accessing the firmware
	Diagnostic firmware menu
	Dumping the firmware
	Bootloader Prompt
	Inject code
	GDB Stub
	Reconaissance
	Memory Map
	Overview of the boot process
	Keeping control
	Analysis woes
	Understanding the OS
	Reversing ATA command handling
	Tasks involved in reading
	Outline
	Hooking the backdoor
	Simple solution
	Interfacing the backdoor
	Making the backdoor permanent
	Outline
	Scenario description
	Handling misalignment
	Handling misalignment
	Exfiltration tweaks
	Experiment setting
	Exfiltration of /etc/shadow
	Outline
	Limitations
	Addressing limitations
	Slide Number 46
	Impact
	Impact
	Specific countermeasures
	General countermeasures
	General countermeasures
	Outline
	Conclusion
	Questions?
	Reversing the firmware file format
	Reversing the firmware file format

