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Motivation 

• A computer of computers: All code is part of 
the TCB 

Touchpad 
controller 

Display 
controller 

Hard disk 

Keyboard 
controller 

Northbridge 
chipset 

GPU 

http://www.blogcdn.com/de.engadget.com/media/2011/08/samsungnotebookserie7gamer2.jpg 



Motivation 

• Why a firmware attack? 
• Firmware infections are very hard to find and even 

harder to remove 

• Why the hard drive? 
• Almost all persistent information is stored on hard 

drives 

• How can such a backdoor be accessed? 
• Shown in this presentation 

 
 



Goals 

• Compromise the firmware of a COTS disk 
• Design a backdoor to exfiltrate data 
• Evaluate performance and impact 
• Discuss countermeasures 



Similar work 

• Similar hacking was presented by sprite_tm 
(Jeroen Domburg) at OHM2013 
• Different HDD brand 
• Using JTAG debugging 
• More information here: 

http://spritesmods.com/?art=hddhack 

 
 

http://spritesmods.com/?art=hddhack&page=1


Similar work 

• But we were  
both not the  
first to try  
this idea … 
 

http://upload.wikimedia.org/wikipedia/commons/1/1a/NSA_IRATEMONK.jpg 



Historical development 

• IBM 350: Announced in 1956  

http://www-03.ibm.com/ibm/history/exhibits/storage/images/PH0350A.jpg 



Introduction of IDE drives 

• Integrated Disk Electronics simplifies HDD 
attachment 
• Disk controller steers motors and analog data 

stream coding 
• PC speaks to drive over AT attachment protocol 

 

http://www.escotal.com/Images/computer/hardrivegeometry.jpg http://www.harddriverecovery.org/blog/wp-content/uploads/2011/06/seagatedrive.jpg 



Typical HDD firmware 

• Runs on a microprocessor (ARM, MIPS, …) 
• Can be reprogrammed 
• Is stored in flash and on disk 
• Has several tasks 

• Decode ATA protocol 
• Translate Logical Block Addressing (LBA) to disk 

geometry (Cylinder Head Sector – CHS) 
• Coordinate other electronics (Motors, data stream 

decoding) 
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Experimental setup 
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Accessing the firmware 

• Firmware update files are in proprietary 
format  
• not straightforward to reverse 

• JTAG on the PCB seems to be disabled 
•  OpenOCD cannot read memory 

• Serial port on master-slave jumpers shows 
diagnostic menu 



Diagnostic firmware menu 

• Diagnostic menu is accessed by pressing  
CTRL-Z in the serial terminal1 

Online ESC: Rev 0011.0000, Flash,   Abort Looping Command or Batch File 

Online '?': Rev 0011.0000, Flash,   Display Diagnostic Buffer Information 

Online ^Z: Rev 0011.0000, Flash,   Enable ASCII Diagnostic Serial Port Mode 

All Levels '+': Rev 0012.0000, Flash,   Peek Memory Byte, 
+[AddrHi],[AddrLo],[NotUsed],[NumBytes] 

All Levels '-': Rev 0012.0000, Flash,   Peek Memory Word, -
[AddrHi],[AddrLo],[NotUsed],[NumBytes] 

All Levels '=': Rev 0011.0002, Flash,   Poke Memory Byte, 
=[AddrHi],[AddrLo],[Data],[Opts] 

Online ^C: Rev 0011.0000, Flash,   Firmware Reset 

1 http://forum.hddguru.com/viewtopic.php?t=11926&start= 



Dumping the firmware 

• Python script can extract firmware 
• Accessing invalid addresses crashes firmware 
• Neighborly thanks to Travis Goodspeed for 

dumping the firmware 

• Code execution not possible  
• Code is write-protected, cannot insert hook into 

execution flow 



Bootloader Prompt 

ASCII Diag mode 

 

F3 T> 

Spinning Down 

 

Spin Down Complete 

Elapsed Time 6.012 secs 

Delaying 5000 msec 

 

Jumping to Power On Reset� 
SEA-3 Yeti Boot ROM 2.0  (12/06/2007) 

Copyright Seagate  2007 

 
 
 

Boot Cmds: 

 DS 

 AP <addr> 

 WT <data> 

 RD 

 GO 

 TE 

 BR <divisor> 

 BT 

 WW 

? 

 RET 

> 

• CTRL-C reboots and displays bootloader 



Inject code 

• Bootloader menu commands allow code 
execution 
• AP sets address pointer 
• WR writes byte to address pointer 
• RD reads byte from address pointer 
• GO executes code at address pointer 

• Getc and putc functions are known from 
disassembly 

• With some trial and error a self-developed tiny 
GDB stub (2.6k) can be injected 
 



GDB Stub 

• Uses a serial interface and a simple text-based 
protocol 
• 6 primitives are enough to give debugging support 

with software breakpoints: 
Read memory, write memory, read registers, write 
registers, continue and get signal 

• GDB’s stub implementation is not for ARM and 
too big (for my purpose) 



Reconaissance 

• Gather information on processor 
• CPUID        Arm966 
• Debug unit  Disabled 
• Caches       No caching 

• Reconstruct memory map 
• Some memory regions are known from the FW dump 
• IO region is known from disassembling serial port 

driver 

• Dump flash memory contents 



Memory Map 

Memory Range Type 

0x00000000 – 0x00008000 Code SRAM 
0x00100000 – 0x00120000 ROM 
0x00200000 – 0x00400000 Code DRAM 
0x04000000 – 0x04004000 Data SRAM 
0x06000000 – 0x07000000 Data DRAM 
0x40000000 – 0x50000000 IO 



Overview of the boot process 

• ROM bootloader 
• Loads next stage from flash 

• Flash bootloader 
• “Stripped-down” firmware 
• Enables DRAM and sets up memory protection 
• Loads main FW from disk 

• Main firmware 
• Handles normal disk operation 

• Overlays 
• Loaded by main FW, e.g., for the diagnostic menu 

 



Keeping control 

• Software debugging is fragile 
• Overwriting exception vectors removes debugger 

handler 
• Memory write protection prevents setting 

breakpoints 
• Memory layout changes necessitate moving 

debugger stub 
• No external debugging interrupt 

• Emulated with breakpoint in serial receive 
interrupt 



Analysis woes 

• Analyzing the firmware turned out to be quite 
hard … 
• Almost no strings 
• No known APIs 
• Software debugger cannot set watchpoints  

• Data tracing is hard 

• Firmware excessively uses of global variables 
• Lots of function pointer tables 

 



Understanding the OS 

• Custom real-time OS 
• Simple scheduler 

• Fixed number of tasks 
• Event-based 

• Tasks are woken depending on accepted events mask 
• Preemptive 

• Tasks are changed after interrupts 
• Cooperative 

• Task yields when generating an event 



Reversing ATA command handling 

• Experiment setting 
• HDD connected through USB-SATA bridge 
• Bridge controlled by Python libusb script 
• Cypress bridge chip has special mode for sending 

raw ATA commands :) 
• (Also Linux kernel does not like devices that do 

not respect SATA timeouts) 

 



Tasks involved in reading 

• ATA read command received by HDD 
• Tasks process command by passing events 

• Execution traces can now be recorded with 
AVATAR 
 

Interrupt 
handler SATA task Cache 

task 

Read-
write 
task 

http://www.s3.eurecom.fr/tools/avatar/
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Hooking the backdoor 

• Data can be modified anywhere between 
reception and R/W task 
• This backdoor hooks between cache and 

read/write task 
• Checksums protect data integrity per block 

• 16-bit checksum 
• 32-bit checksum 
• Checksumming code is contained in  

firmware … 
 



Simple solution 

• First hook is in write path and scans block for 
magic commands 
• If a command is detected, LBA to read is stored in 

memory 
• Second hook is in read path and checks if 

• Backdoor has stored LBA to read  
• Read LBA is a trigger LBA 
 Replace LBA to read with the one from the 

backdoor 



Interfacing the backdoor 

Backdoor: Read 
LBA 0x1234 

ATA cmd: Write 
LBA 0x4567 

Backdoor detects 
command  

Backdoor copies 
sector at LBA 
0x1234 to 0x4567  

Content of  LBA 
0x1234 

ATA reply: Read 
LBA 0x4567 
ATA cmd: Read LBA 
0x4567 



Making the backdoor permanent 

• Firmware update file format reverse-
engineered 

• HDParm or custom driver could send firmware 
update command 

• Once installed, a malicious FW 
can refuse firmware updates 
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Scenario description 



Handling misalignment 

M | C | .. | .. | .. | .. | 
One block 

M | C | .. 
| 

 Misaligned 

.. | .. | .. 
| 



Handling misalignment 

One block 

M | M | M | C 
| 

M | M | M | C | M | M 
| 

 M | M | M | C | M | M 
| 

M | C | M | M | M | M 
| 

.. | .. | 



Exfiltration tweaks 

• Make data robust 
• ASCII-Armor (base64) 

• Caching 
• Wait 
• Create dummy traffic 



Experiment setting 

PHP-based  
forum 



Exfiltration of /etc/shadow 

• HDD filesystem is “mounted” in Python 
• Exfiltrate /etc/shadow in nine “queries” 

• Read MBR from block 0 
• Read superblock if ext3 partition 
• … 

• Total time < 1 minute 
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Limitations 

• Backdoor commands need to pass the block 
cache 
• In Linux, blocks are cached in memory and only 

evicted to the HDD when necessary 
• Limits maximum throughput 

• In a RAID, HDD has only a partial view of the 
stored data 

• Software encryption defeats the backdoor 



Addressing limitations 

• Infect host code by 
• Injecting code into Master Boot Record 
• Detecting and infecting a boot loader (ntldr, Grub, 

…) 
• Detecting DLL loads and infecting DLLs 

• Alleviates software encryption, low 
throughput 

• Less stealthy 
 



 



Impact 

HDD vendors market share Q3 2011 

http://news.techeye.net/business/hdd-business-to-become-mexican-standoff 



Impact 

HDD vendors market share 2012 (projected) 

http://news.techeye.net/business/hdd-business-to-become-mexican-standoff 

My work 
Sprite_tm’s 

work 



Specific countermeasures 

• Backdoor detection 
• Host level: Sporadically read blocks from HDD after 

write and verify integrity 
• Network level: Detect backdoor commands in network 

packets 
• Data hiding 

• Software HDD encryption 
• System integrity 

• Verify that operating system has not been tampered 
with 

 



General countermeasures 

• Firmware integrity 
• Sign firmware 
• Start from a root of trust (e.g., ROM bootloader) 
Does not help against code injection/ROP 
Difficult to realize with plugin model 

• Remote attestation 
• Prove that firmware has not been modified 

 
 
 
 



General countermeasures 

• Better firmware analysis tools 
• Static (binary) analysis 
• Dynamic analysis 
• Emulation 

• Establish minimum security standards 
• E.g., scanner for “worst practices” 
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Conclusion 

• Presented a firmware backdoor attack 
• Which is able to exfiltrate data 
• No modifications to PC code necessary 

• Attack is almost impossible to detect 
• Backdoor command needs to be observed or 

known 
• Make sure no one tampers your HDD! 

• Supply chain 
• Root access to PC 



Questions? 



Reversing the firmware file format 

• Reverse the update function 
• Find flash dump and memory dumps in 

firmware update file 
• File is organized in sections 

• First stage bootloader 
• Flash image 
• Main firmware 
•  Overlays 
• Servo controller 8051 code :) 



Reversing the firmware file format 

• Each section can again contain chunks 
• Flash data chunk 
• Memory chunk 

• I will clean the script on the flight back and 
post it on my website 
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