Finish Him!

Reversing Midway Arcade Audio Compression

Introduction

About Me
IT Monkey (Consultant) by day

Hardware Hacker by night
Interests

Designing & reversing embedded systems
IC security & failure analysis
Arcade platforms

Automotive stuff
Contact

Email: exide31337@yahoo.com

Overview of DCS

Digital Compression System (DCS) sound system

Developed by Williams Electronics for Williams

pinballs & casino slot machines and Midway coin-op

arcade games

Architecture provides 6 channels of 16-bit audio
Independent control over the volume, looping, & playback
of each

Playback anything from a short sound effect to voice-

overs, to several minute long music tracks

15t pinball game to use DCS was Indiana Jones (1993)

1°t arcade game to use DCS was Mortal Kombat Il

(1993)

Source: http://www.planetarypinball.com/mmsz/Williams/archives/willy3.htm

Motivation

As a kid, | remembered MKII & follow-on games
sounding way more atmospheric & realistic than
anything else at the time
Wanted to understand the ADSP-2100 series of DSPs,
and reverse the HW & code
MAME does a fantastic job of emulating DSP, but
executes binary DSP code blob as-is

Get no insight into how the DCS algorithm works
Did some Googling, searching forums & Usenet

Found a decent Usenet post (circa 1995) from Williams,
covering high-level system architecture

Mostly found other people asking about how it works
Chance to learn DSP reversing, signal processing, &
audio compression techniques

Variants of DCS

DCS1 ROM-based mono

ADSP2105 DSP w/ single DAC
DCS-95

Revised version of above for WPC-g5 pinball system

DCS2 ROM-based stereo

ADSP2104 DSP w/ dual DACs
DCS2 RAM-based stereo

ADSP2115 DSP w/ dual DACs
DCS2 RAM-based multi-channel

ADSP2181 DSP w/up to 6 DACs

Source: https://en.wikipedia.org/wiki/Digital_Compression_System

History of Arcade Audio

Techniques
Analog
Sound generators |
BurgerTime (1982) — Gl sound generator IC

FM synthesis (ie, AdLib/SoundBlaster)
Jackal (2986) —Yamaha FM IC

Sample-based (PCM, ADPCM, etc.)
Out Run (1986) —Yamaha FM IC + PCM sample IC ™

TMNT4 (1991) —Yamaha FM IC + ADPCM sample IC
Mortal Kombat (1992) —Yamaha FM IC + ADPCM sample IC

Super SFIl Turbo (1994) —Yamaha FM IC + QSound sample IC
SFIIl 379 Strike (1999) — 16-channel 8-bit sample IC

Perceptual-based audio compression (DCS)

MKII (1993) —Analog Devices DSP

Modern PC-based (WAV, OGG, MP3; etc.)

How DCS Works

Uncompressed audio is encoded offline on a PC (486-class typ.)
Source audio files broken down into frames of 240 samples
Each frame is 7.68 ms of audio
Sounds can range from one to several thousand frames
Each frame is transformed from time-domain to frequency-
domain by a 256-point Fast Fourier Transform (FFT)

Cosine windowing & 8 samples of overlap on each end
Resulting spectrum is further broken down into 16 sub-bands
and quantized according to masking curves & user-controlled
parameters
The quantizing levels & resulting data for each frame are
entropy-encoded into variable length packets
The packets for each file are combined with header blocks and
stored as files that are used later to generate ROM images

Source: http://www.planetarypinball.com/mmsz/Williams/archives/willy3.htm

DCS System Architecture

Architecturally similar to MPEG-1 Layer | &
Layer 2 Audio (MP1, MP2)

Similar complexity to Sony SDDS & ATRAC

(MiniDisc), DTS, Philips Digital Compact Cassette

(DCC) tapes

MPEG-1 Layer 3 (MP3) more complex than DCS
~10:1 compression ratio
Very difficult to make encoder, due to missing
masking curve logic, entropy-coding logic,
quantizer behavior

Might be possible, but audio quality likely poor

DCS System Architecture

TITMS34010
32-bit CPU/GPU

M27C801 AD ADSP-2100 Family
1 Mb x 8-bit UV 16-bit DSP 8k x 8-bit SRAMs
EPROMs _
AD AD18g1
16-bit Serial
io DA
Audio DAC TITLoS4 TDA7240

Quad Op-Amp 20W AudioAmp Mono Speaker

Digital Signal Processor (DSP)

Analog Devices ADSP-2100 Family

SUMMARY FUNCTIONAL BLOCK DIAGRAM
16-Bit Fixed-Point DSP Microprocessors with
On-Chip Memory R 2
Enhanced Harvard Architecture for Three-Bus DATA ADDRESS ' By A
- GENERATORS || PROGRAM PROGRAM || DATA il
Performance: Instruction Bus & Dual Data Buses SEQUENCER MEMORY | | MEMORY
Independent Computation Units: ALU, Multiplier/ Ty RN RN iy
Accumulator, and Shifter | PROGRAM WEMORY ADDRESS i s
Single-Cycle Instruction Execution & Multifunction [" ! Dm;m“mm —>
Instructions | i L~
On-Chip Program Memory RAM or ROM | R S DATA ™
& Data Memory RAM - —_L__ : K=
Integrated 1/0O Peripherals: Serial Ports, Timer, 4 ' L exrema
Host Interface Port (ADSP-2111 Only) vy ¢ ol v B iy
. . ARITHMETIC UNITS SERIAL PORTS TIMER HOST
FEATURES 10 MHz XTAL in use [aww | [wac | [ssarren | NTPORT
(ADSP-2111)

25 MIPS, 40 ns Maximum Instruction Rate)
Separate On-Chip Buses for Program and Data Memory - ASE2108 CoRE
Program Memory Stores Both Instructions and Data

(Three-Bus Performance) This data sheet describes the following ADSP-2100 Family

Dual Data Address Generators with Modulo and
Bit-Reverse Addressing

Efficient Program Sequencing with Zero-Overhead
Looping: Single-Cycle Loop Setup

Automatic Booting of On-Chip Program Memory from
Byte-Wide External Memory (e.g., EPROM)

Double-Buffered Serial Ports with Companding Hardware,
Automatic Data Buffering, and Multichannel Operation

Processors:

ADSP-2101
ADSP-2103
ADSP-2105
ADSP-2111
ADSP-2115

3.3 V Version of ADSP-2101

Low Cost DSP

DSP with Host Interface Port

ADSP-2161/62/63/64 Custom ROM-programmed DSPs

Source: Analog Devices ADSP-2100 Family Data Sheet

ATWNAATY Aenn T

DSP Program Memory Map

DCS Internal
Program RAM

DCS External
Program RAM
(Shared w/ Data RAM)

Unused

INTERNAL RAM
1K

Loaded From
External
Boot Memory

Reserved
1K

EXTERNAL
14K

MMAP=0

0x0000

Ox03FF
0x0400

0x07FF
0x0800

0x1FFF (DCS code doesn’t map anything in past here)

Ox3FFF

Source: Analog Devices ADSP-2100 Family Data Sheet

DSP Data Memory Map

1K External 0x0000 A
DWAITO $04FF area holds sub-band
DCS External 1K Extermal o0 dequantization values per-channel
Data RAM (SRAM) DWAIT1 o
(0x0800-0x1FFF Shared w/ Program RAM) 0x0800 $0700-$077F —ve sin twiddle factors
0x2000 $0780-307FF +ve cos twiddle factors
10K External EX "F‘R.L‘IAL
DCS 0x1000-Word DWAIT2 RAN. $0C00/$0CF0 DAC playout buffer
EPROM Bank Window pair
0x3000
EPROM Bank Select 1K External _ .
Register (0x3000) DWAIT3 TMS writes to its 0x16800000
0x3400 (DSP IRQ2 fires)
TMS CPU 1/O Latch "BE?;?{";"“
(OX3400-OX3403) e ' d $380(():|-$390|1 decodedb ﬂ:
§12 for ADSP-2105 equantized samples & IFFT butfer
DCS Internal ADSP-2115 T
Data RAM 0x3A00 | $3910-$391F Sound cmd buffer
INEf:AL (IRQ2 handles data from TMS)

: 0x3C00
$3972-$3981 is a temp
System Registers Ox3FEO buffer for entropy-decoded
OX3FFF

frequency-domain samples
Source: Analog Devices ADSP-2100 Family Data Sheet

Digital-to-Analog Converter (DAC)

Analog Devices AD1851 16-bit Serial PCM Audio DAC

FUNCTIONAL BLOCK DIAGRAM

DSP (PLCC-68) DAC (DIP-16)
LN
L —~ LATCH T 16[+Vg
2 7= 15| TRIM
SERIAL
3 i 14| MSB ADJ
2 REGISTER I :
ouT 13| lout
} 4
5 12| AGND
CONTROL
~ LOGIC ,] s
7 10| RF
- ’ VA ,!:‘.-F'.-‘,-J-J-‘, LY ¥ q: n % 9 8 AD1851/ g VOUT
| “ 4l 40wz R AD1861 =
SCLK =500 kHz (XTAL) XTALZ |
500 kHz / 16-bit = 31250 Hz i NC =NO CONNECT
(ie, 32 kHz Sample Rate) ' '
To Pre-Amp

Source: Analog Devices AD1851 Data Sheet

Sound ROMs

No encryption or obfuscation

Remove from PCB and dump w/ parallel

E(E)PROM programmer
Willem i
Xeltek
Your own design

|00F|
___\VgaAaD
AYS 05|8W
SINGAPDRE

C R R R O R R O S
i
BN R R R R e

‘Et_---_-_qg---n 5

B e e e = T

N
| A
il
N
4
4
"
N
.
.
"
f
o
\
i
i
a
e

gy
-
-
L 3
-
>
-
-
-
E
£
2

Sound ROMs

Wolf MK3 hardware uses 4£x M27C801 (12 Mb x 8-bit = 1 MB)
UV EPROMSs

ie, 4x of these would provide 4 MB total for sound code & data
~10:1 audio compression yields ~40 MB uncompressed

Organization

DSP bootloader (stage 1 & 2) code, program code, data (U2 -
0x0000, 0x1000)

Compression dictionaries (U2 - 0x3000)
Look-up table entries (U2 - 0x4000)

Sound headers (U2 - 0x13800 & up)
Frame headers (U2, U3, U4, Ui - varies)
Compressed audio (U2, U3, Ug, Ug —varies)

Later games use IDE hard drives & copy to DRAM(s)
What does partitioning or file system structure look like?

Sound ROM Structure

0x004048 + (3 * TMS sound cmd) =
Sound Look-Up Table entry for that
sound

Stage1& 2
Bootloader &
Program Code

Compression
Dictionaries

Sound Look-Up
Table Entries

Sound Headers
Frame Headers

& Compressed
Audio

U2

0x00000

0x03000

0x04000
0x4040-0x4042 hold pointer to base TMS
sound cmd offset (ie, 0x004048)

0x4046 holds max accepted TMS sound cmd
value (ie, 0x52C6-1)
0x52C6 — 1 = 0x52C5
0x004048 + (3 * 0x52C5) = 0x4048 + 0xF84F
0x13897 (Varies) = 0x13897 max cmd

Varies

OXFFFFF

Sound ROM Structure

0x00000 0x00000 0x00000
Frame Headers Frame Headers Frame Headers
& Compressed & Compressed & Compressed
Audio Audio Audio
OxFFFFF OxFFFFF OxFFFFF

U3 U4 Us

Sound ROM Bank-Switching

DSP uses a bank-switched window to access 0x1000 16-bit words from
ROM at atime
Writing to DM($3000) will map in a given bank at a given offset into
DM($2000-$2FFF)
Upper 8-bits of word are modulo-4 values ($00,$01,$02,$03) determining
which ROM image to select (U2,U3,Ug,Us)
Lower 8-bits of word determine the offset in the ROM image (ie, $17 is offset
0x17000)
Some examples:

$0000 U2 0x00000
$0001 U2 0x01000
$0017 U2 0x17000
$0104 U3 0x04000
$0220 U4 0x20000

$0314 ud 0x14000

T Unit (MKII Version)

Source: http://www.crazykong.com/pcbs/G%20-%200/MortalKkombat2Upgrade.pcb.jpg

’ 4 &
R » -9
=\ ; (1)
o o m :
R L L]

T
P

[\l
H

§
|

PN EPEEE

>

w.
i o
W. -
{

i

N=ssesanananas

£

)
=3

WLLAMS ELECTROMCS CAMES WC
ST
[] .
' o’
- oo
b | i T

‘

i
.

D

-

o
A0
e

-
— "

cnsenssssll

-
-

T Unit (MKII Version)

Source: http://www.tvspels-nostalgi.com/Bilder/PCB/romboard_mortal%2okombat%202.jpg

Wolf Unit (ie, MK3)

FRRRARARRAARARRRARARAARAAIMAR AL
: }’{'LHHH'} ‘FL‘LLLLLLLLL, s A

Lkl

EERE R

GRERERLER ¢

‘!:-

[Hvsﬂﬂ‘iﬂ 3 qnsn

.m%umuj& h’.’i’.ﬂw 4

llllllllllllll

AT 4

Wolf Unit (ie, MK3)

“‘RAA T
HE | ‘rr'%’rr-*r"
Sielsdvlenminlen

— PN

i o S o o . o o

EEEwww
e e
LR R AR R R AR R R R R

e =
=} sii’ég;

e S 2

Wolf Unit (ie, MK3)

Fo~L1. . || | 09°94W AwraIy ceex@ |
A V% o e LSheT T Tt

] ek et ket et Al b A VA VE VL WL W
Lo_sl—- e T ey T

-

£E , ,_,LJ_-U laLE

Wolf Unit (ie, MK3)

1 QL § el Khahababehehahhebaha Y

INN-T0LL

|

i

alal
iF
EE

Dletdt
oL [0 36
it sl
g AL esn "

'IIM7 hﬁﬁﬂul T B Fn~gd
Gl el g/ E‘HL |§ l

QIR | | R R
XTI [syﬂ|n|nﬂgé[lﬂmumw:If,ﬁ!.}?.?-&?ﬂ-?-ﬂfg. e

|9 HEL O -
o o COCTAAEIRE '"gggggrj

g it ‘.II’P’I ls]‘;pu uml _;r :;n

r"‘ —— e

3
L
3

i

;

_.‘l.ﬁ-- T4
|

"l

009800500096
=
3
'
FiFvidiiaiiiiesee
m;[!!iiii:’lix’]ﬂ“f”“ﬂ

slalzials
I3

’
r&
-

’lilw

.
é M
-
wl
-
™
- s
Ll L
*
O
ne
.
L) e
-
L o o
.
w o r
.
- _
N -
)
- - @

& (224 I-..---.

]LBO i]

. l Y .'] L_J J : L5 l_.yurr:u}],ii

"L CY¥o"" &

Killer Instinct

ANALO
oeViEEs

-
A0

Source: http://www.thekillerinstinctproject.com/kiproject/images/kipcb.jpg

Seattle (1e, NFL Blitz 2000)

haaedd
SFRrRrEY

Source: http://s89.photobucket.com/user/yodafrommn/media/IMG_o0435.jpg.html

World Cup Soccer Pinball

A-16917-50031

P e e e e e e e

QSRS ALLERELL L

T
®30 o
-

!

e

A1

e -
[e e 1o e 2
T I8 060 omas

Ll -

ANALOG "0
DEVICES . 2t
ADSP-2105 o« LA
3]
{

brrbress.

-
7

B

KP-20 . "
ED(ASBET 71,1 A — P
et

peRses
ARG AL G
& errsae,

1
]
1
1
T
a
a
a
1
a1
a
]

s
"
-
s
.
.
-
2
B

LE N A8 a8
-

§ 4 N _ ————— - e e _ AL P o, S W

Source: http://pinwiki.net/images/1/211/WPC_DCS_Sound_Board.jpg

DCS System Design

of output channels — mono, stereo, multi-channel
Polyphony [“voices” - 6
Sample rate — 31250 Hz
Bit depth — 16-bit
Time-domain to frequency-domain (FFT) —in hardware (DSP)
Sub-bands - 16
Quantization — variable # of bits allocated per sub-band
Entropy encoding — Lossless Prefix coding (Huffman coding)
Bitstream generation
Look-up table entries pointing to sound headers
Sound header points to frame header
Frame header includes length & sub-band quantization values
Variable-length compressed audio data
Image (ROM) creation
DSP bootloader/initialization code, program code, data
Compression codeword-symbol dictionaries & compressed audio

Data split into images & burned to individual EPROMs

Compression Background

Fast Fourier Transform (FFT) used to convert input time-
domain samples to frequency-domain
Sub-band coding used to distribute bits based on the

frequency bins

= High frequencies less perceivable, so need less bits

Loss?ess entropy coding (Huffman) used to pack samples
into variable-length data stream

Compression Methods

Model-Based Waveform-Based

Linear Predictive AutoRegressive Polynomial Fitting Lossless Lossy

Statistical Universal Spatial/Time-Domain || Frequency-Domain

| |
[| [I
@ Arithmetic Lempel-Ziv Filter-Based Transform-Based
S
Subband [} Wavelet @ DCT
I — S

Compression Background

By identifying what can and can’t be heard, audio compression
discards information that can’t be perceived

Knowing that signals below a particular amplitude at a particular
frequency are not audible, you can hide quantization noise from
your brain

A tone at a certain frequency will raise the threshold of audibility in
a critical band around that frequency

Temporal masking is the masking that occurs when a sound raises
the threshold of audibility for a brief interval preceding and
following the sound

Vs. traditional lossless methods like ZIP or RAR, which don't
discard data, and won’t compress as small

Source: http://www.ece.mcmaster.ca/~shirani/multiz2/audiocompression.pdf

Compression Background

——— Threshold of Hearing
------ Altered Threshold

Sound
Pressure 4 Masker

Level (dB)

/ Masked Tone

/

>
Frequency (Hz)

Source: http://www.ece.mcmaster.ca/~shirani/multiz2/audiocompression.pdf

DCS Encoder

DCS Encoder

Uncompressed Compressed
Audio Samples Bitstream
(16-bit, 32 kHz) (Variable Length)

Time _ Frequency
Domain Domain

DCS Decoder

DCS Decoder

Compressed Uncompressed
Bitstream Audio Samples
(Variable Length) (16-bit, 32 kHz)

Frequency Time
Domain Domain

(S DD

File Edit

J : ’ >

Disk Options Tools Window Help Er —
)ebug Options
e ¥ B B :
ESHSH L 50 QE ‘ 7 Ypaco [ADSP-2105 ':dcs' data space memory v 16-bit
£ % B B |28 04F8 0080 0001 0000 0004 0002 0000 3902 0000 Y
e ‘% B MY h @ ‘& = ‘ 0500 0000 0000 OO000 0000 0000 0000 0000 0000 wuew.. e Data RAM
0508 0000 0000 OOO0 0000 0000 0000 0000 O - v x|
e ———————— 0510 0007 0009 0006 0003 0002 0002 0000 = =
Errorlog: Ultimate Mortal Kombat 0518 0000 0000 0000 0000 0000 0000 0000 ;
set 0x00000000:
D0D0DE== 0520 0000 0000 OOO0 Q000 O000 0000 0000 0000 wevevewssanes
osole S S SR G o S SN M S I .
g g he eventfl 9530 0000 QOO0 QOO0 QOO0 0000 0000 0000 0000ccccecaans 255
00000 gExcesce ggﬂﬂ}:g Input shne 0538 0000 0000 0000 0000 0000 0000 0000 0000 weeeeeeeeesessns e
Exceeded pending input line 0540 0000 0000 0000 0000 0000 0000 0000 0000 wvveeeeenennnees Mt
cxcesded pending Tnput 1ine 93 000 9000 o000 G000 9000 000 Q000 GO0 e M| S
Exceeded pending input Tine 0 IRz 3050418623

Exceeded
Exceeded
Exceeded
Exceeded
Exceeded

pending

ihput

des-window... [des-d

x

P Structures
| Member [8)
s

2

@

=

g

2

[}

2

n

)
1]
V]
(=8
~

SI
SE

AX1_SEC
AYD_SEC
AY1_SEC
AR_SEC
AF_SEC
MX0_SEC
MX1_SEC
MYD_SEC
MY1_SEC
MRO_SEC
MR1_SEC
MR2_SEC
MF_SEC
ST SFC

MRO 39F7
ME1 0001
MR2 00

00000075
03D4
29F9
0000
Q0F7
03D4
FFO9
FFFE
0986
0001

0013
00

32-bit
Shifter

0000
S55AA
0000
AABD
0000
2762
0010
0000
0000
0000
0000
jol0]

0000
0000

A G3/5 Pi(anms) = sk cosensiy |
, =
i o
03FF AR = ABS SR1, MX1 = DM(I3,M3), MYl = PM{I7,M7) 00 P RAM
0400 NOP Q0000000
0401 NOP Q0000000 rogram
0402 NOP Q0000000
0403 NOP Q0000000
0404 NOP Q0000000
— || 0405 NOP Q0000000
~ | 0406 NOP Q0000000
0407 NOP Q0000000
0408 NOP Q0000000
0409 NOP Q0000000
0404 NOP Q0000000
040B NOP Q0000000 =3y
040C NOP Q0000000 v |
Stopped at breakpoint 1D ~ =
Stopped at breakpoint 1D —
Stopped at breakpoint 1D K
Stopped at breakpoint 1D b |
Stopped at breakpoint 1D
Stopped at breakpoint 1D
Stopped at breakpoint 1D
Stopped at breakpoint 1
»a3=0x00
»a0=0xa
SEopped at watchpoint 3 writing word to 00003912 (PC=3C3) (data=A)
>bpe 13
Breakpoint 13 enabled
Stopped at breakpoint 13
>bpd 13 ||
Breakpoint 13 disabled =
Stopped at watchpoint 3 reading word from 00003912 (PC=33) v |

DSP Boot & Initialization

Boot from ROM U2,
bank O

Set data memory wait
states

Install IRQ handlers
(level-triggered)

Enable IRQ2 (TMS CPU)
& wait

Disable all IRQs

Wipe internal data RAM
Replace reset vector
Soft reboot

Wipe DAC sample buffers $0C00/$0CFO

Copy 0x200 3 out of 4 bytes from U2, 0x800 to PM($0800)
as 24-bit words

Jump to new code at PM($0800)

Wipe ext. data RAM $0300-s07FF

Wipe int. data RAM $3800-$39FF

Configure serial port for 16-bit, soo kbaud, Frame Sync pin
for DAC LE, auto-buffer from $0C00 DAC buffer

Enable IRQ2 (TMS CPU)

Copy twiddle factors from PM($0900) to DM($0700)
Copy various compression dictionaries & other look-up
tables from PM to DM

Copy max allowed TMS sound cmd from U2, 0x4046 into
DM($04CA)

Copy 0x300 3 out of 4 bytes from U2, 0x2000 to
PM($0800) as 24-bit words (decompression code)

Enter main loop

DSP Main Code Loop

* Sanity checking
* Calculate Base Ptr+ (3 * TMS
Sound Cmd) to find sound entry

* Per-channel * Per-channel
* All channels down- * Per-channel
mixed * Shared frequency-
* Time-domain domain samples
* 256 samples 1 MAC in DM($38xx)
* Overlap & window * Entropy-decode

* Wait for DAC buffer * De-quantize

1. Process TMS Sound Commands
PM($0028)

Wipe previous contents of internal data RAM
$38xX used for sample decoding & IFFT
Check if any new sound commands have
arrived from TMS CPU in DM($391X) buffer

IRQ2 fires when TMS sends data to DSP

Handler validates command & stores in buffer

TMS 0x16800000 mapped to DSP DM(0x3400)
Verify sound cmd is in valid range for game
Find & store pointer to valid sound header
Check for more pending sound cmds

2. Find/Parse Sound & Frame Headers
PM($01A6)

TMS sound cmd (ie, $0429) expands to 0x4048 +
(3 * $0429) = $4CC3 (U2, bank 4)
Sound LUT entry at $4CC3 is: 0x18183

U2, offset 0x18183 contains sound header
0101000007 0169000001011047 54 01

@ﬂ @17 0Q Sound contains Pointer to frame header
frames (bank $0104 = U3 offset 0x04754)

Sound header points to frame header (us, 0x04754)

= 01 47 FF FF FF
FF FF

2. Find/Parse Sound & Frame Headers
PM($01A6)

Compressed sub-band de-quantization values
follow after frame header

Compressed audio data follows these values

Remaining frames consist of de-quantization
values and compressed audio (no headers)

For each channel
Find & parse headers as described

Check if all frames of sound processed yet
Wipe header pointers when frame done

3. Decompress Frame Into DM($38xx)
PM($016F)

Call PM($0800) if 15t frame

Find the # of sub-band de-quantization values from frame
header

Wipe data RAM area that will hold these values

Call PM($0801) for all other frames

Entropy-decode all sub-band values (ie, 11) for frame to
DM($04FF) region (delta-encoded after 15t frame)

Entropy-decode (ie, 11) audio codewords into symbols & store
to DM($3972) region

De-quantize these symbols w/ scaling factor & accumulate w/
other channels’ symbols & store to DM($3800) region

Reach PM($0189) when all frames processed
Wipe current frame pointer & # of decoded frames counter

Accumulation in Frequency-Domain

Amplitude Per Sub-Band (One Frame Of Audio)

120
100
86 Active Channel(s)
W Harpoon
60 W Scream
Music
4O
20

Sub-Band1 Sub-Band2 Sub-Band3

4. IFFT, Scale Down, Window, DAC Fill

PM($00B1)

Perform 256-point inverse-FFT on frequency-
domain samples in DM($3800) region

15t & 2" iterations are unrolled

Bit-reversed addressing mode used for accessing twiddle
factors in scrambled order

Remaining 6 iterations are looped

8 total iterations (28erations = > -6 points)
Scale time-domain samples down by 1/256 or 1/
sqrt(256), based on # active channel(s)
Apply smoothing cosine window to samples
MAC in 8 samples of overlap on each side (16
total) from prior frame (avoids audible artifacts)

Real-Valued FFT Array Layout

DFT INPUT/OUTPUT SPECTRUM

Time Domain, x(n) Frequency Domain, X(k)
REAL DFT DC Offset
Real Real *{)*
N2 = f /2 N Points
N Points + Two Zero
oin "
6 oA \ zero \ i ’/ zero Points
NINNNNN 0< k< Ni2
0 N/2
COMPLEX DFT
Real Real "{_ﬁl‘;
0 N/2 N-1 0 N/2 N-1
2N Points zero zero 2N Points
Imaginary \4 Imaginary »/
HEEEEEEE NN EE
0 N/2 N-1 0 N/2 N-1
0< nsN-1 0< ksN-1

Source: Analog Devices Mixed-Signal Design Handbook

4. IFFT, Scale Down, Window, DAC Fill

PM($00B1)

Wait for serial port to finish clocking out existing sample
buffer to DAC

DM($0C00) or DM($0CFQ), whichever is currently in use
Copy 240 time-domain samples to standby DAC buffer
Keep remaining 16 samples for next frame’s overlap
When it's time, serial port treats standby buffer as active &
clocks out to DAC

Trivia
If no sound is requested, DSP calculates IFFT of zeroes, copies
zeroes to DAC buffer, & clocks zeroes to DAC
500 kHz DAC clock [16-bit samples = 31250 Hz sample rate

DAC is termed DMA-driven, since DSP buffers are in external
SRAM (not on-chip) & DSP ALU/MAC not involved in transfer

Frequency-Domain Samples

7))
i
Q.
=
©
p
=
©
&
O
2
v
£
T

-10

Leftover 16 Samples

Smoothing Cosine Window

35000

30000

25000

20000

15000

10000

5000

5. Calculate Gains, Respond to TMS

PM($0802)

Calculate gains used for channel volumes,

cross-fades, sample scaling
Respond to TMS CPU, if it req

timing/looping data from DSP

Useful for synchronizing pinbal

uested sound

lighting,

triggering mechanical flippers, etc.

Conclusion

Using a low-cost DSP allowed high-efficiency,
good quality, audio compression algorithm to
be accelerated in hardware
Provided an ~10-to-1 compression ratio
Game audio could still be squeezed into EPROMSs
(vs. non-solid-state CD-ROMs or hard drives)
Competing systems were using FM synth and
low-quality, short, sample-based playback
DCS allowed musician the freedom to
compose like they were in a traditional studio

Conclusion

The eternal debate:

Street Fighter vs. MK

SuperSFIl QL) Mortal N
Turbo Kombat 3

(1994) (1995)

Thank you!

