
Attacking and Defending

BIOS in 2015

Oleksandr Bazhaniuk, Yuriy Bulygin (presenting), Andrew Furtak,

Mikhail Gorobets, John Loucaides, Alex Matrosov, Mickey Shkatov

Advanced Threat Research

Agenda

State of BIOS/EFI Firmware Security

Recent Classes of Vulnerabilities

S3 Resume Boot Script

Firmware Configuration (UEFI Variables)

Input Pointers in SMI Handlers

Call-Outs in SMI Handlers

Detecting and Mitigating These Vulnerabilities

Conclusions

Plain Ordinary Art of

Breaking BIOS...

* Quotes are from or based on novels by Strugatsky brothers

http://en.wikipedia.org/wiki/Arkady_and_Boris_Strugatsky

We seem to have a bit of a problem

• 37 unique publicly disclosed issues in the last ~2 years

(by only a handful of researchers)

• Multiple of these are really classes of issues with many

instances in affected firmware products (SMI input

pointers, SMI call-outs, indiscriminate use of UEFI vars..)

• Many same issues affect multiple vendors at once (S3

boot script, UEFI variables, SMI call-outs, SMI input

pointers, missing basic BIOS write protections…)

• Issues in open source EDK reference implementation

may find their way in multiple UEFI firmware products

• And updating system firmware is not an easy thing

Jolly Ghosts (2013-2014)
Vulnerability Ref Affected Discoverer

EFI firmware is not write protected (attack on Full-Disk Encryption with

TPM aka “Angry Evil Maid”, subverting TPM measured boot). In 2009,

Sacco & Ortega discovered legacy BIOS were not write protected

CSW2013,

NoSuchCon

2013

Multiple

Intel ATR,

MITRE,

LegbaCore

Secure Boot bypass due to SPI flash protections are not used BH2013

Intel ATR

Secure Boot bypass due to PE/TE Header confusion CSW2014

Secure Boot bypass due to CSM default enabled or CSM

enable/disable stored in Setup (2 issues)

CSW2014

Secure Boot bypass due to “Clear keys” and “Restore default keys”

stored in Setup

CSW2014

Secure Boot bypass due to ignoring SecureConfig integrity mismatch CSW2014

Secure Boot bypass via on/off switch stored in Setup variable CSW2014 Multiple Intel ATR,

LegbaCore

Unauthorized modification of UEFI variables in UEFI systems (Secure

Boot policies stored in Setup, corrupting Setup contents) – 2 issues

VU#758382

Tianocore

Multiple LegbaCore,

Intel ATR

SMM Cache attack protections (SMRR) not enabled (“The Sicilian”) VU#255726 Multiple

LegbaCore

Dell BIOS in some Latitude laptops and Precision Mobile Workstations

vulnerable to buffer overflow (“Ruy Lopez”)

VU#912156 Dell

SMI Suppression if SMM BIOS protection is not used (“Charizard”) VU#291102 Multiple

Intel BIOS locking mechanism contains race condition that enables

write protection bypass (“Speed Racer”)

VU#766164 AMI,

Phoenix

http://www.coresecurity.com/files/attachments/Persistent_BIOS_Infection_CanSecWest09.pdf
https://cansecwest.com/slides/2013/Evil Maid Just Got Angrier.pdf
http://www.nosuchcon.org/talks/2013/D2_01_Butterworth_BIOS_Chronomancy.pdf
https://media.blackhat.com/us-13/us-13-Bulygin-A-Tale-of-One-Software-Bypass-of-Windows-8-Secure-Boot-Slides.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf
https://www.kb.cert.org/vuls/id/758382
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://www.kb.cert.org/vuls/id/912156
https://www.kb.cert.org/vuls/id/766164

Vulnerability Ref Affected Discoverer

UEFI EDK2 Capsule Update vulnerabilities a.k.a. “King and Queen’s

Gambit” (2 issues)

VU#552286

Tianocore

Multiple,

EDK2

LegbaCore

UEFI Variable “Reinstallation” (bypassing Boot-Service only variables) Tianocore Multiple,

EDK2
Intel ATR

Insecure Default Secure Boot Policy for Option ROMs

Tianocore EDK2 Intel ATR

Incorrect PKCS#1v1.5 Padding Verification for RSA Signature Check

Overwrite from PerformanceData Variable

CommBuffer SMM Overwrite/Exposure (3 issues)

TOCTOU (race condition) Issue with CommBuffer (2 issues)

SMRAM Overwrite in Fault Tolerant Write SMI Handler (2 issues)

SMRAM Overwrite in SmmVariableHandler (2 issues)

Integer/Heap Overflow in SetVariable

Heap Overflow in UpdateVariable

Overwrite from FirmwarePerformance Variable

Integer/Buffer Overflow in TpmDxe Driver

Protection of PhysicalPresence Variable

Exploding Rainbows (2014)

http://www.kb.cert.org/vuls/id/552286
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download

Vulnerability Ref Affected Discoverer

Boot Failure Related to UEFI Variable Usage (36 issues) Tianocore EDK2 Intel ATR, TianoCore

dev, LegbaCore

Boot Failure Related to TPM Measurements Tianocore EDK2 TianoCore dev

Tianocore UEFI implementation reclaim function vulnerable to

buffer overflow (2 issues)

VU#533140

Tianocore

EDK2,

Insyde

Rafal Wojtczuk,

LegbaCore

Overflow in Processing of AuthVarKeyDatabase Tianocore EDK2 Rafal Wojtczuk,

LegbaCore

Counter Based Authenticated Variable Issue Tianocore EDK2 TianoCore dev

Some UEFI systems do not properly secure the EFI S3

Resume Boot Path boot script (“Venamis”)

VU#976132 Multiple Rafal Wojtszuk, Intel

ATR, LegbaCore

Some BIOS protections are unlocked on resume (“Snorlax”) VU#577140 LegbaCore

Loading unsigned Option ROMs (“Thunderstrike”) based on

earlier work by @snare

trmm.net Apple Trammell Hudson

SMI input pointer validation vulnerabilities (multiple issues) CSW2015 Multiple Intel ATR

SMI handler call-out vulnerabilities (multiple issues)

Earlier by Filip Wecherowski & ITL (bugtraq, ITL)

LegbaCore Multiple LegbaCore

SPI flash configuration lock (FLOCKDN) is lost after resume

from S3 sleep (Update: Apple advisory)

reverse.put.as Apple Pedro Vilaça

Update: Trammell

Hudson, LegbaCore

Spitting Devil's Cabbage (2014-2015)

The list may be incomplete

http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
https://www.kb.cert.org/vuls/id/533140
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
http://sourceforge.net/projects/edk2/files/Security_Advisory/EDK II Security Advisory Log 002.pdf/download
https://www.kb.cert.org/vuls/id/976132
http://ho.ax/downloads/De_Mysteriis_Dom_Jobsivs_Black_Hat_Slides.pdf
https://trmm.net/Thunderstrike
https://cansecwest.com/slides/2015/A New Class of Vulnin SMI - Andrew Furtak.pdf
http://www.securityfocus.com/archive/1/505590
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://www.legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
https://support.apple.com/en-us/HT204934
https://reverse.put.as/2015/05/29/the-empire-strikes-back-apple-how-your-mac-firmware-security-is-completely-broken/

Your BIOS is definitely maybe

vulnerable

http://sovietart.me/

This is one way to handle the problem

http://sovietart.me/

Calm silence ends the history of

mankind...

So let’s talk what needs to be done

But, first, why we need any changes

Attacks via S3 Resume Boot Script

#S3SleepResumeBootScript

Attacks via UEFI Variables

#BadBIOSVariableContents

Attacks via Bad SMI Handlers Input Pointers

#SMIHandlerBadInputPointers

Attacks via SMI Handlers Call-Outs

#ThisVulnSeriouslyHadToBeGoneLongAgo

Attacking Firmware

via S3 Resume

Boot Script

Image source

http://images6.fanpop.com/image/photos/33700000/Freddy-Krueger-freddy-krueger-33737228-500-602.jpg

VU# 976132 (CVE-2014-8274)

• Freddy Krueger vulnerabilities (S3 Resume Boot Script)

were independently discovered by us and other security

researchers

• Rafal Wojtczuk of Bromium and Corey Kallenberg

(@coreykal) of LegbaCore first published Attacks on UEFI

Security (paper)

• Details of PoC exploit were described by Dmytro Oleksiuk

(@d_olex) in Exploiting UEFI boot script table vulnerability

• Pedro Vilaça (@osxreverser) disclosed a related

vulnerability in Mac EFI firmware (SPI Flash Configuration

HW lock bit FLOCKDN is gone after waking from sleep)

https://www.kb.cert.org/vuls/id/976132
https://frab.cccv.de/system/attachments/2557/original/AttacksOnUEFI_Slides.pdf
http://events.ccc.de/congress/2014/Fahrplan/system/attachments/2566/original/venamis_whitepaper.pdf
http://blog.cr4.sh/2015/02/exploiting-uefi-boot-script-table.html
https://reverse.put.as/2015/05/29/the-empire-strikes-back-apple-how-your-mac-firmware-security-is-completely-broken/

Searching for ACPI global structure…

AcpiGlobalVariable UEFI variable points to a structure in

memory (ACPI_VARIABLE_SET_COMPATIBILITY)

[CHIPSEC] Reading EFI variable Name=‘AcpiGlobalVariable’..

[uefi] EFI variable AF9FFD67-EC10-488A-9DFC-

6CBF5EE22C2E:AcpiGlobalVariable:

18 be 89 da

Searching for “S3 Boot Script”…

Pointer AcpiBootScriptTable at offset 0x18 in the structure

ACPI_VARIABLE_SET_COMPATIBILITY points to the script table

typedef struct {

//

// Acpi Related variables

//

EFI_PHYSICAL_ADDRESS AcpiReservedMemoryBase;

UINT32 AcpiReservedMemorySize;

EFI_PHYSICAL_ADDRESS S3ReservedLowMemoryBase;

EFI_PHYSICAL_ADDRESS AcpiBootScriptTable;

..

} ACPI_VARIABLE_SET_COMPATIBILITY;

“S3 Boot Script” table in memory

Why “S3 Resume Boot Script”?

To speed up S3 resume, required HW configuration actions are

written to an “S3 Resume Boot Script” by DXE drivers instead of

running all configuration actions normally performed during boot

S3 Boot Script is a Sequence of Platform

Dependent Opcodes

00 00 00 00 21 00 00 00 02 00 0f 01 00 00 00 00

00 00 c0 fe 00 00 00 00 01 00 00 00 00 00 00 00

00 01 00 00 00 24 00 00 00 02 02 0f 01 00 00 00

00 04 00 c0 fe 00 00 00 00 01 00 00 00 00 00 00

00 00 00 00 08 02 00 00 00 21 00 00 00 02 00 0f

01 00 00 00 00 00 00 c0 fe 00 00 00 00 01 00 00

00 00 00 00 00 10 03 00 00 00 24 00 00 00 02 02

..

01 00 00 00 00 00 00 00 f0 00 02 00 67 01 00 00

20 00 00 00 01 02 30 04 00 00 00 00 21 00 00 00

00 00 00 00 de ff ff ff 00 00 00 00 68 01 00 00

..

d3 d1 4b 4a 7e ff

Decoding Opcodes

chipsec_util.py uefi s3bootscript

[000] Entry at offset 0x0000 (length = 0x21):

Data:

02 00 0f 01 00 00 00 00 00 00 c0 fe 00 00 00 00

01 00 00 00 00 00 00 00 00

Decoded:

Opcode : S3_BOOTSCRIPT_MEM_WRITE (0x02)

Width : 0x00 (1 bytes)

Address: 0xFEC00000

Count : 0x1

Values : 0x00

..

[359] Entry at offset 0x2F2C (length = 0x20):

Data:

01 02 30 04 00 00 00 00 21 00 00 00 00 00 00 00

de ff ff ff 00 00 00 00

Decoded:

Opcode : S3_BOOTSCRIPT_IO_READ_WRITE (0x01)

Width : 0x02 (4 bytes)

Address: 0x00000430

Value : 0x00000021

Mask : 0xFFFFFFDE

S3 Boot Script Opcodes

• I/O port write (0x00)

• I/O port read-write (0x01)

• Memory write (0x02)

• Memory read-write (0x03)

• PCIe configuration write (0x04)

• PCIe configuration read-write (0x05)

• SMBus execute (0x06)

• Stall (0x07)

• Dispatch (0x08) / Dispatch2 (0x09)

• Information (0x0A)

• …

Processor I/O Port Opcodes

S3_BOOTSCRIPT_IO_WRITE/READ_WRITE opcodes in the S3
boot script write or RMW to processor I/O ports

Opcode below sends SW SMI by writing value 0xBD port 0xB2

“Dispatch” Opcodes

S3_BOOTSCRIPT_DISPATCH/2 opcodes in the S3 boot script

jumps to entry-point defined in the opcode

Opcode Restoring BIOS Write Protection

S3_BOOTSCRIPT_PCI_CONFIG_WRITE opcode in the S3 boot

script restores BIOS hardware write-protection (value 0x2A

indicates BIOS hardware write protection is ON)

So what can go wrong with the script?

Address (pointer) to S3 boot script is stored in a runtime
UEFI variable (e.g. NV+RT+BS AcpiGlobalTable)

The S3 boot script itself is stored in unprotected memory

(ACPI NVS) accessible to the OS or DMA capable devices

The PEI executable parsing and interpreting the S3 boot

script or any other executable needed for S3 resume is

running out of unprotected memory

S3 boot script contains Dispatch (Dispatch2) opcodes

with entry-points in unprotected memory

EFI firmware “forgets” to store opcodes which restore all

required hardware locks and protections in S3 boot script

So what’s the impact?

Malware in the OS may be able to change the actions that

are performed by firmware on S3 resume before the OS

resumes at the waking vector

Ok… And?

• Execute arbitrary firmware code during early resume

• Disable hardware protections such as BIOS write

protection which are going to be restored by the script

• Install persistent BIOS rootkit in the SPI flash memory

• Read/write any memory or execute arbitrary code in the

context of system firmware during early boot (PEI)

• Bypass secure boot of the OS and install UEFI Bootkit

Yes, It Can

Steal

Image source: http://www.imdb.com/title/tt0439581/

Your

PGP keys!

Forbes

http://www.imdb.com/title/tt0439581/
http://www.forbes.com/sites/thomasbrewster/2015/03/18/hacking-tails-with-rootkits/

83% of all days in a year start the same:

alarm clock rings…

then vulnerable BIOS awakes…

Attacking S3 Boot Script (Demo)

Lucky you! BIOS protection is ON

PASSED: BIOS is write

protected

Sleep well

Found Boot Script in

unprotected memory

Script Opcode restores

BIOS Protection == ON

Changing it to OFF

Oh wait…

FAILED: BIOS is NOT

protected completely

Opcode restoring BIOS Write Protection

has been modified

S3_BOOTSCRIPT_PCI_CONFIG_WRITE opcode in the S3 boot

script restored BIOS hardware write-protection in OFF state

Detecting & Mitigating

S3 Resume Boot Script Issues

There’s a script to detect these issues

chipsec_main.py –m common.uefi.s3bootscript

[x][==

[x][Module: S3 Resume Boot-Script Protections

[x][==

[!] Found 1 S3 boot-script(s) in EFI variables

[*] Checking S3 boot-script at 0x00000000DA88A018

[!] S3 boot-script is not in SMRAM

[*] Reading S3 boot-script from memory..

[*] Decoding S3 boot-script opcodes..

[*] Checking entry-points of Dispatch opcodes..

[-] Found Dispatch opcode (offset 0x014E) with Entry-Point:

0x00000000DA5C3260 : UNPROTECTED

[-] Entry-points of Dispatch opcodes in S3 boot-script are

not in protected memory

[-] FAILED: S3 Boot Script and entry-points of Dispatch

opcodes do not appear to be protected

Fixing S3 Boot Script Protections

1. Do not keep address of S3 Boot Script table (or a

structure with a pointer to the table) in unprotected NV
UEFI variable (ex. NV+RT+BS AcpiGlobalVariable)

2. Do not save the S3 Boot Script table to memory

accessible by the OS or DMA capable devices (e.g. use

EDKII LockBox)

3. Do not save the PEI executable that parses and executes

the S3 Boot Script table and any other PEI executable(s)

needed for S3 resume to memory accessible by the OS

or DMA capable devices

4. Review the S3 Boot Script for Dispatch opcodes and

establish whether the target code is protected.

Protecting S3 Boot Script with LockBox

A Tour Beyond BIOS Implementing S3 Resume with EDKII

LockBox: https://github.com/tianocore/edk2-MdeModulePkg/blob/master/Include/Protocol/LockBox.h

http://firmware.intel.com/sites/default/files/A_Tour_Beyond_BIOS_Implementing_S3_resume_with_EDKII.pdf
https://github.com/tianocore/edk2-MdeModulePkg/blob/master/Include/Protocol/LockBox.h

Saving S3 Boot Script to LockBox

SaveBootScriptDataToLockBox():

…

//

// mS3BootScriptTablePtr->TableLength does not include

EFI_BOOT_SCRIPT_TERMINATE, because we need add entry at runtime.

// Save all info here, just in case that no one will add boot

script entry in SMM.

//

Status = SaveLockBox (

&mBootScriptDataGuid,

(VOID *)mS3BootScriptTablePtr->TableBase,

mS3BootScriptTablePtr->TableLength +

sizeof(EFI_BOOT_SCRIPT_TERMINATE)

);

ASSERT_EFI_ERROR (Status);

Status = SetLockBoxAttributes (&mBootScriptDataGuid,

LOCK_BOX_ATTRIBUTE_RESTORE_IN_PLACE);

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Library/PiDxeS3BootScriptLib/BootScriptSave.c

https://svn.code.sf.net/p/edk2/code/trunk/edk2/MdeModulePkg/Library/PiDxeS3BootScriptLib/BootScriptSave.c

Attacking EFI Firmware via

UEFI Variables

39

• UEFI BIOS stores persistent config

as ”UEFI Variables” in NVRAM part

of SPI Flash chip

• UEFI Variables can be Boot-time or

Run-time

• Run-time UEFI Variables are

accessible by OS via run-time

Variable API (via SMI Handler)

• OS exposes UEFI Variable API to

[privileged] user-mode applications

SetFirmwareEnvironmentVariable

/sys/firmware/efi/efivars/ or

/sys/firmware/efi/vars

Image Source: Adafruit

Where does firmware store its settings?

http://www.adafruit.com/products/1564

Lots of settings…

Secure Boot

certificates

(PK, KEK, db, dbx)

Setup

BootOrder

AcpiGlobalVariable

Things we found in unprotected runtime

(read “user-mode”) accessible variables

Secure Boot configuration (All You Boot Are Belong To Us)

Addresses to structures/buffers which firmware reads from or

writes to during boot

Policies for hardware protections & locks such as BIOS

Write Protection, Flash LockDown, BIOS Interface Lock

Policies disabling security features

Data which firmware really really needs to just boot

Secrets: BIOS passwords in clear

https://cansecwest.com/slides/2014/AllYourBoot_csw14-intel-final.pdf

This cannot be good…

• Overwrite early firmware code/data if

(physical addresses) pointers are stored

in unprotected variables

• Bypass UEFI and OS Secure Boot if

its configuration or keys are stored in

unprotected variables

• Bypass or disable hardware

protections if their policies are stored in

unprotected variables

• Make the system unable to boot

(brick) if setting essential to boot the

system are stored in unprotected

variables

Image Source: The Atlantic

http://cdn.theatlantic.com/static/infocus/chernobyl25/c02_05010183.jpg

But that was a theory. In practice…

Multiple unique vulnerabilities (~50 instances), related to UEFI

variables, were discovered only recently

Both in EFI firmware and in open source Tiano reference

implementation

Resulted in

 OS Secure Boot bypass due to settings stored in EFI variables

 Unbootable platform due to corruption of EFI variable contents

 Buffer overflows when consuming EFI variable contents

 Arbitrary overwrites due to pointers in EFI variables

 Bypassing Boot-Services protection by re-installing as Runtime

 Bypassing physical presence protection of EFI variables

Who needs a Setup variable, anyway?

VU#758382

• Storing Secure Boot settings in Setup

could be bad

• Now user-mode malware can clobber
contents of Setup UEFI variable with

garbage or delete it

• Malware may also clobber/delete
default configuration (StdDefaults)

• The system may never boot again

The attack has been co-discovered with researchers from

LegbaCore (Corey Kallenberg, Xeno Kovah) and MITRE

Corporation (Sam Cornwell, John Butterworth).

Source: Setup For Failure

Image Source: Anchorman

http://haxpo.nl/wp-content/uploads/2014/01/D1T2-More-Ways-to-Defeat-Secure-Boot.pdf
http://img3.wikia.nocookie.net/__cb20101224032158/jackyman225/images/3/3f/Brick_yelling.jpg

Why bother? Just bring it to IT and ask to

“re-install” firmware…

Image Source: Intel ATR ;)

You may as well bring this

Image Source: Anchorman

http://img3.wikia.nocookie.net/__cb20101224032158/jackyman225/images/3/3f/Brick_yelling.jpg

Avoiding Problems with UEFI Variables

Image Source: KEEP CALM-O-MATIC

http://sd.keepcalm-o-matic.co.uk/i/keep-calm-and-declare-your-variables.png

• Separate critical settings from other setting. Store them in

different variables with different protections

• Remove RUNTIME_ACCESS attribute

• Make them Read-Only via VARIABLE_LOCK_PROTOCOL

• Use UEFI Authenticated Variables

• Remove debug/test content (e.g. HW lock policies)

• Use PCD instead of variables

• Some variables require user present (e.g. SetupMode)

• May implement integrity checks for critical variables

• Storing BIOS passwords or other sensitive content in

variables in clear is not a good protection

Limit Access to UEFI Variables

• Assume contents of the variables are malicious. Validate

them before consuming

• Is there an address in the variable? Is it pointing to your

own code/data?

• Validate data written to variables is within allowed range

• Can you boot if variable is corrupted? If no, apply

defaults and enter recovery

• Recover to defaults if critical settings are invalid or

missing. Implement a catastrophic recovery

Validate Contents of UEFI Variables

Read-Only Variables (Variable Lock)

VARIABLE_LOCK

Protocol Loaded
EndOfDxe

Exit

BootServices

RequestToLock(MyVar)

MyVar is still writeable

SetVariable API enforces

that MyVar is Read-Only

OSUEFI  OSUEFI DXE

EDKII reference code implements Variable Lock Protocol:
https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/VariableLock.h

https://github.com/tianocore/edk2/blob/master/MdeModulePkg/Include/Protocol/VariableLock.h

Poisonous Pointers

Attacking SMI Handlers via

Unvalidated Input Pointers

Image source

https://718be87de2f7403df3e8-1d1221e10f82d636f1f5dc20a850700a.ssl.cf5.rackcdn.com/files/POISON_Featured.jpg

Where there is no BIOS, there is

boredom. BIOS makes life interesting.

System Management Interrupt (SMI) Handlers

SMRAM Base

Protected SMRAM

SMI code lives here

0x00000000

0xFFFFFFFF

SMI handlers

SMM state

save area

SMBASE + 8000h

SMBASE

SMBASE + FFFFh

SMRAM

SMBASE + FC00h

Pointer Arguments to SMI Handlers

Phys Memory

SMI Handlers in
SMRAM

OS Memory

SMI Handler writes result to a buffer at address passed in RBX…

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

SMI handler specific structure

SMI

If SMI Handler Doesn’t Check Pointers

Phys Memory

SMI Handlers in
SMRAM

OS Memory

Exploit tricks SMI handler to write to an address inside SMRAM

RAX (code)

RBX (pointer)

RCX (function)

RDX

RSI

RDI

Fake structure inside SMRAM

SMI

What to overwrite inside SMRAM?

• Exploit often doesn’t control values written to target address

• What can an exploit overwrite in SMRAM?

 SMI handler code starting at SMBASE + 8000h

 Internal SMI handler’s state/flags inside SMRAM

 Contents of SMM state save area at SMBASE + FC00h, where the
CPU state is stored on SMM entry

• Current value of SMBASE value is also saved in state save area at
offset FEF8h and restored on SMM exit (RSM)

• An exploit can move SMRAM to a new, unprotected location by
changing the SMBASE value stored in the SMM state save area

How does exploit know where to write?

1. Dump contents of SMRAM to find SMBASE

• Use another vulnerability (e.g. S3 boot script) to disable SMRAM

protections and use DMA or graphics to read SMRAM

• Read SPI flash, extract SMM EFI binaries and RE SMM init code

• Use similar SMI pointer read vulnerability to expose SMRAM

• Use hardware JTAG debugger offline

2. Exploit can guess location of SMBASE

• Try SMBASE locations equal to SMRR base or SMRR base –

8000h (SMRR base at SMI entry point)

• Blind iteration through all offsets within SMRAM as potential

saved SMBASE value

One way to acquire contents of SMRAM

Low MMIO Range

TOLUD

4GB

SMRAM

DMA access to SMRAM

is not blocked as TSEG

Base moved

Graphics Aperture

GTT MMIO

Access to GFx Aperture is

redirected to SMRAM

TSEG Base

GFx Mem Base

GTT PTEs

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• CPU stores current value of SMBASE in SMM save state area on SMI

and restores it on RSM

RAX (code)

RBX (pointer)

RCX (function)

SMI handler specific structure

SMI

SMBASE

SMM State Save AreaSaved SMBASE value

SMI Entry Point

(SMBASE + 8000h)

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Exploit prepares fake SMRAM with fake SMI handler outside of SMRAM

Fake SMI handler

SMBASE

Saved SMBASE value SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Exploit triggers SMI w/ RBX pointing to saved SMBASE address in SMRAM

• SMI handler overwrites saved SMBASE on exploit’s behalf with address of

fake SMI handler outside of SMRAM (e.g. 0 PA)

RAX (code)

RBX (pointer)

RCX (function)

SMI

SMBASE

Fake SMI handler

Saved SMBASE value SMM State Save Area

SMI Entry Point

(SMBASE + 8000h)

How does the attack work?

Phys Memory

SMI Handler

OS Memory

• Exploit triggers another SMI

• CPU executes fake SMI handler at new entry point outside of original

protected SMRAM because SMBASE location changed

SMI

SMBASE
Fake SMI handler

Saved SMBASE value SMM State Save Area

New SMI Entry Point

How does the attack work?

Phys Memory

SMI Handler

(SMRAM is not protected)

OS Memory

• Fake SMI handler disables original SMRAM protection (disables SMRR)

• Then restores original SMBASE values to switch back to original SMRAM

SMBASE
Fake SMI handler

Original saved SMBASE

value
SMM State Save Area

New SMI Entry Point

How does the attack work?

Phys Memory

SMI Handler

(SMRAM is not protected)

OS Memory

• The SMRAM is restored but not protected by HW anymore

• Any SMI handler may be installed/modified by malware

SMBASE

SMI Entry Point

(SMBASE + 8000h)

Exploiting SMI Input Pointers (Demo)

EDKII CommBuffer

Source: A Tour Beyond Implementing UEFI Auth Variables in SMM with EDKII (Jiewen Yao, Vincent Zimmer)

 CommBuffer is a memory buffer used as a communication protocol between OS runtime and DXE

SMI handlers. Pointer to CommBuffer is stored in “UEFI” ACPI table in ACPI memory

 Contents of CommBuffer are specific to SMI handler. Variable SMI handler read UEFI variable

GUID, Name and Data from CommBuffer

 Example: VariableAuthenticated SMI Handler reads/writes UEFI variables from/to CommBuffer

http://sourceforge.net/p/tianocore/edk2/ci/master/tree/SecurityPkg/VariableAuthenticated/RuntimeDxe/

Attacking CommBuffer Pointer

SmmVariableHandler (

...

SmmVariableFunctionHeader = (SMM_VARIABLE_COMMUNICATE_HEADER *)

CommBuffer;

switch (SmmVariableFunctionHeader->Function) {

case SMM_VARIABLE_FUNCTION_GET_VARIABLE:

SmmVariableHeader = (SMM_VARIABLE_COMMUNICATE_ACCESS_VARIABLE *)

SmmVariableFunctionHeader->Data;

Status = VariableServiceGetVariable (

...

(UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);

VariableServiceGetVariable (

...

OUT VOID *Data

)

...

CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

SMRAMCommBuffer

CommBuffer TOCTOU Issues

• SMI handler checks that it won’t access outside of CommBuffer

• What if SMI handler reads CommBuffer memory again after the check

• DMA engine (for example GFx) can modify contents of CommBuffer

InfoSize = .. + SmmVariableHeader->DataSize + SmmVariableHeader->NameSize;

if (InfoSize > *CommBufferSize - SMM_VARIABLE_COMMUNICATE_HEADER_SIZE) {

Status = VariableServiceGetVariable (

...

(UINT8 *)SmmVariableHeader->Name + SmmVariableHeader->NameSize

);

VariableServiceGetVariable (

...

OUT VOID *Data

)

...

if (*DataSize >= VarDataSize) {

CopyMem (Data, GetVariableDataPtr (Variable.CurrPtr), VarDataSize);

Time of Check

Time of Use

Detecting & Mitigating

Unvalidated SMI Input Pointers

Tools For Everybody, Free, And No One

Will Go Away Unsatisfied!

Discovering SMI Pointer Vulns with CHIPSEC

chipsec_main.py –m tools.smm.smm_ptr –a config,smm_config.ini

[x][===

[x][Module: Testing SMI handlers for pointer validation vulnerabilities

[x][===

...

[*] Allocated memory buffer (to pass to SMI handlers) : 0x00000000DAAC3000

[*] >>> Testing SMI handlers defined in 'smm_config.ini'..

...

[*] testing SMI# 0x1F (data: 0x00) SW SMI 0x1F

[*] writing 0x500 bytes at 0x00000000DAAC3000

> SMI 1F (data: 00)

RAX: 0x5A5A5A5A5A5A5A5A

RBX: 0x00000000DAAC3000

RCX: 0x0000000000000000

RDX: 0x5A5A5A5A5A5A5A5A

RSI: 0x5A5A5A5A5A5A5A5A

RDI: 0x5A5A5A5A5A5A5A5A

< checking buffers contents changed at 0x00000000DAAC3000 +[29,32,33,34,35]

[!] DETECTED: SMI# 1F data 0 (rax=5A5A5A5A5A5A5A5A rbx=DAAC3000 rcx=0 rdx=...)

[-] <<< Done: found 2 potential occurrences of unchecked input pointers

Wash pointers before consuming! They

may be poisonous

 SMI code has to validate address/pointer (+ offsets) they receive
from OS prior writing to it including returning status/error code

 Check input pointer + size for overlap with SMRAM range. E.g.
use SmmIsBufferOutsideSmmValid function in EDKII

 Also validate pointers before reading. They can expose SMRAM

SmiHandler() {

// check InputBuffer is outside SMRAM

if (!SmmIsBufferOutsideSmmValid(InputBuffer, Size)) {

return EFI_SUCCESS;

}

switch(command)

case 1: do_command1(InputBuffer);

case 2: do_command2(InputBuffer);

One Missed CALL

Attacking SMI Handlers Via

SMM Call-Outs

#ThisVulnHadToBeGoneLongAgo

• In 2009, SMI call-out vulnerabilities were discovered by

Rafal Wojtczuk and Alex Tereshkin in EFI SMI handlers

(Attacking Intel BIOS) and by Filip Wecherowski in legacy

SMI (BIOS SMM Privilege Escalation Vulnerabilities)

• Also discussed by Loic Duflot in System Management

Mode Design and Security Issues

• In 2015(!) researchers from LegbaCore found that many

modern systems are still vulnerable to these issues How

Many Million BIOS Would You Like To Infect (paper)

https://www.blackhat.com/presentations/bh-usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf
http://www.securityfocus.com/archive/1/505590
http://www.ssi.gouv.fr/IMG/pdf/IT_Defense_2010_final.pdf
http://www.legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf
http://legbacore.com/Research_files/HowManyMillionBIOSesWouldYouLikeToInfect_Whitepaper_v1.pdf

These issues seem to come in packs

14 call-out vulnerabilities in one SMI handler!

BIOS SMM Privilege Escalation Vulnerabilities

http://www.securityfocus.com/archive/1/505590

SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB
Far CALL in

SMM to BIOS

service outside

of SMRAM

SMI Handlers Calling Out of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload
0F000:08070 =

0xF8070 PA

Far CALL in

SMM to BIOS

service outside

of SMRAM

UEFI SMI Call-Outs

DXE SMM drivers

may call Runtime

Services functions

Are SMI call-outs fixed yet?

How Many Million BIOS Would You Like To Infect by LegbaCore

http://www.legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf

Detecting & Mitigating SMI Call-Outs

Statically analyzing SMI handlers for call-outs

Legacy SMI handlers do far calls to BIOS functions in F/E –

segments (0xE0000 – 0xFFFFF physical memory) with specific

code segment selectors

Statically analyzing SMI handlers for call-outs

Searching where EFI DXE SMM drivers reference/fetch outside of

SMRAM range of addresses with IDAPython plugin by LegbaCore:

How Many Million BIOS Would You Like To Infect by LegbaCore

http://www.legbacore.com/Research_files/HowManyMillionBIOSWouldYouLikeToInfect_Full2.pdf

Dynamically detecting SMM call-outs

DXE SMI drivers may call Runtime, Boot or DXE services API

 Find Runtime, Boot and DXE service tables containing UEFI API

function pointers in memory (EFI System Table)

 Patch each function with detour code chaining the original function

 Enumerate and invoke all SMI handlers

 If SMI handler calls-out to some UEFI API, patch will get invoked

Difficulties with this approach:

 it needs enumeration of all SMI handlers (with proper interfaces)

 SMI handlers may call functions non in RT/BS/DXE service tables

Hooking runtime UEFI services…

BIOS developers can easily detect call-outs

1. A “simple” ITP debugger script to step on branches and verify

that target address of the branch is within SMRAM

2. Enable SMM Code Access Check HW feature on pre-

production systems based on newer CPUs to weed out all

“intended” code fetches outside of SMRAM from SMI drivers

3. NX based soft SMM Code Access Check patches by Phoenix

look promising

http://www.uefi.org/sites/default/files/resources/UEFI_Plugfest_May_2015 Firmware - Securing SMM.pdf

Mitigating SMM Call-Outs

1. Don’t call any function outside of protected SMRAM

 Violates “No read down” rule of classical Biba integrity model

2. Enable SMM Code Access Check CPU protection

 Available starting in Haswell based CPUs

 Available if MSR_SMM_MCA_CAP[58] == 1

 When enabled, attempts to execute code not within the ranges

defined by the SMRR while inside SMM result in a Machine Check

Exception

Blocking Code Fetch Outside of SMRAM

Phys Memory

SMRAM
CALL F000:8070

Legacy BIOS Shadow

(F/ E-segments)

PA = 0xF0000

1 MB

0xF8070: payload0F000:08070 =

0xF8070 PA

Code fetch

in SMM 

causes MC

exception

It's like trying to fit an octopus into a pair

of tuxedo pants…

Image source: speckyboy.com

http://speckyboy.com/2011/09/05/30-political-propaganda-posters-from-modern-history/

Why are we investing in CHIPSEC?

• Security researchers need a way to develop PoCs to test
exploitability and impact of firmware issues

• OEM/BIOS vendors need a way to consistently run
regression tests when building their firmware products

• We need security researchers to be able to capture their
research in a way easily consumable by OEM/BIOS
vendors

• Corporate IT needs a way to know how secure the
systems they are about to deploy to 1000’s of employees

• It’s got to be open source so everyone could see what it’s
testing and trust its results

Conclusions

BIOS/UEFI firmware security is an industry wide
concern. Everyone is affected. There are often
multiple issues of the same type. Some take years to
mitigate

Researchers keep finding dragons and drive
awareness. Classes of issues start to disappear.
Now we have tools – use them to test your systems!

Many OEM/BIOS vendors are responsive to security
issues, stepping up to improve security of their
products (and using CHIPSEC now). HW protections
are slowly being adopted

I was told that this road would take me to

the ocean of death, and turned back

halfway. Since then crooked, round-

about, godforsaken paths stretch out

before me.

Acknowledgements

We’d like to thank the following teams or individuals for

making the BIOS and EFI firmware a bit more secure

• Nick Adams, Aaron Frinzell, Sugumar Govindarajan,

Jiewen Yao, Vincent Zimmer, Bruce Monroe from Intel

• Corey Kallenberg, Xeno Kovah, Rafal Wojtczuk, @snare,

Trammell Hudson, Dmytro Oleksiuk, Pedro Velaça

• UEFI Forum (USRT, USST), OEMs and IBVs who suggest

solutions

References

1. Intel’s Advanced Threat Research Security of System Firmware

2. CHIPSEC: https://github.com/chipsec/chipsec

3. http://www.legbacore.com/Research.html

4. Low level PC attack papers by Xeno Kovah

5. MITRE Copernicus

6. Trianocore security advisories

7. UEFI Forum USRT

http://www.intelsecurity.com/advanced-threat-research/security-system-firmware.html
https://github.com/chipsec/chipsec
http://www.legbacore.com/Research.html
http://timeglider.com/timeline/5ca2daa6078caaf4
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.tianocore.org/security/
http://uefi.org/security

A little knowledge can be a dangerous

thing...

Thank You!

