
Reverse Engineering
 Windows AFD.sys
Steven Vittitoe @bool101

 bool@google.com

Outline
● Why AFD.sys
● Winsock overview
● Interesting findings
● Input to AFD.sys
● Analysis
● Fuzzing
● Future

What is AFD.sys?
● Default kernel module
● Ancillary Function Driver
● Ring 0 entrypoint for Winsock
● Required for socket() calls
● Not all network comms use it:

○ winhttp wininet
○ webdav mrxsmb

Why AFD.sys?
● Sandbox accessibility

○ Chrome YES
○ Adobe Reader YES
○ IE EPM YES

● History of bugs:
○ CVE-2011-2005 CVE-2012-0148
○ CVE-2013-3887 CVE-2014-1767

Goals
● Project Zero’s goal:

 “Make 0-days hard(er)”
● Strengthen Sandboxes

○ Widely adopted strategy
○ Increase attacker cost
○ Ways to escape:

■ Logic errors (broker process)
■ Bugs in syscalls / win32k.sys
■ Bugs in accessible devices!

Why AFD.sys?
● Cannot be disabled until Windows 8

○ Even then not easy to disable
● Complexity and accessibility

○ AFD.sys size ~500KB
■ win32k.sys is 3.1MB
■ most kernel drivers < 100KB

○ 70 IOCTL’s reachable from \\Device\Afd\Endpoint
○ Handles everything from TCP/IP to SAN

Winsock
● socket(AF_INET) call

1. ws2_32 (2 fn)
2. mswsock (4 fn)
3. wshtcpip (1 fn)
4. mswsock (IOCTL)

AFD is a translator
● AFD acts as a server to user mode Winsock

○ Abstracts multiple protocols
○ Ends up relaying to:

■ Transport Driver Interface (TDI)
■ Winsock Kernel (WSK)

● Serves kernel mode clients as a WSK
provider (internal IOCTL)

First Glance
● DbgPrint

○ Normally removed in release builds?
○ 23 xrefs in Win7
○ 113 xrefs in Win8

● 74/279 import DbgPrint* (~25%)
○ Event Tracing for Windows (ETW) extensively used
○ Helpful in RE efforts

Registry
● Several configurations pulled from registry:

○ HKLM\System\CCS\Services\Afd
■ Buffer sizes
■ DisableRawSecurity - admin raw sockets
■ DefaultSendWindow
■ AfdReadRegistry() populates _AfdConfigInfo

● Few are “Volatile” configurations
○ Change notification registered

Inputs

● IOCTLs
● Plug-n-Play Events
● TDI address changes and filtering
● RPC

IOCTLs
● Easy to find tables

○ AfdIrpCallDispatch - functions
○ AfdIoctlTable - numbers

● Another level of indirection
○ AfdImmediateCallDispatch
○ For routines that always

IofCompleteRequest

Immediate Call Dispatch

 =>

Static Bug Hunting
● Windows 7 x86
● Basic bottom up static analysis

○ memcpy, memmove, ExAllocatePool*, etc
○ functions with __security_check_cookie xrefs
○ functions with large stack buffers
○ object reference counts

● Script to find unchecked return values
○ ExAllocatePool* (Note: TagPriority raises exception)

Static Bug Hunting
● Manual review of all reachable IOCTLs

○ Not WSK or SAN related IOCTLs
○ Data alignment
○ Proper size restrictions
○ TOCTOU on METHOD_NEITHER IOCTLs
○ Integer under/overflow issues
○ Signed integer issues

Fuzzing
● Preference for static / dynamic analysis

○ Better understanding of target
○ Leads to better fuzzers

● Two weeks fuzz time
○ Single core
○ Simple fuzzer

■ Hit all IOCTLs
■ Usermode buffer mutated in another thread
■ Basic awareness of what was expected data

Future Work
● “Native” AFD library

○ Skip user mode winsock entirely
○ Compile into shellcode for use in a sandbox
○ Feedback into a more intelligent fuzzer

● More fuzzing
○ At scale
○ More expected data structures defined

● Manual review of WSK and SAN functions

Thanks
● Google
● Project Zero
● James Forshaw

Questions

?

