
Analysing iOS apps: road from 
AppStore to security analysis report

Egor Fominykh, Lenar Safin, Yaroslav Alexandrov
SmartDec

REcon, Brussels, 2017



What we do at SmartDec
• Decompilation, deobfuscation
– x86/x64
– ARM/AArch64
– JVM, Android
– Custom (VMs, less known archs, …)

• Code analysis (sources and binaries)
– Manual static analysis
– Pentesting
– Analysis tools development



iTunes link
https://itunes.apple.com/us/app/balloonist-travellers-world/id1070769999?mt=8

Security report Pseudocode



Plan
• Get an application binary

• Translate application binary into some IR

• Analyse IR for security flaws

• Translate IR into human-readable pseudocode



1: 

Getting binary



A problem
Applications are encrypted. Decryption:

1. Launch an app on an iOS device.
2. iOS decrypts it and loads it to RAM.
3. Dump decrypted binary from RAM.

Jailbroken iOS device is needed.



Jailbreak
• SSH
• Bash
•Cydia Substrate (call/hook any method)
•Clutch



Approach
• Figure out chain of method calls / GUI decisions 

to initiate the download
• Figure out how to make needed GUI decisions 

programmatically, using Cydia Substrate



Main applications
• Springboard.app (GUI) 
• AppStore.app



Process
1. Unlock device — SpringBoard

2. Uninstall all apps — SpringBoard

3. Open iTunes page — SpringBoard

4. Press GET button — AppStore

5. Sign in (detect sign in alert, fill login/password, press 
ok) — SpringBoard

6. Wait OPEN button — AppStore

7. Decrypt — Clutch



2: 
Translation into IR



iOS application recovery challenges

• Lots of things to recover
– Functions
– Program CFG
– Call site arguments and function signatures
– Objective-C/Swift interfaces (even C++)
– Data flow of the program

• AArch64
– ARM32 is not supported anymore



Why LLVM?
• Nice and useful
• Bunch of algorithms
–Alias Analysis
–Dominators
–Loops
–Transformations and optimizations
• Pass Manager
• Ok for C-family apps



Ideas
• Fast automatic translation into LLVM
• Functions and function calls recovery
• CFG reconstruction
• Types and variables recovery
• Objective-C/Swift3 support



Architecture



Image parsing
• Unpacking Fat (Universal) binaries
• Mach-O
• Symbols
• Function starts
• Objective-C runtime (__objc_*)
• Swift virtual tables



CFG reconstruction
• Entry point
• Function starts
• Vtables
• Call sites
• __TEXT section inspection
• Tail calls and trampolines



Trampolines



Tail calls



Interface recovery
• Objective-C interface
– Classes
– Protocols
– Method names
– Ivars
– Demangling

• Swift interface
– Vtables
– Class hierarchy
– Demangling



Objective-C runtime



Objective-C runtime



Swift runtime



Variables and types
• Memory object reconstruction
– Temporary
– Variables
–Globals
– Strings

• Types recovery
– Interprocedural arguments recovery
– Known function signatures
–Objective-C signatures
–WIP: arrays and structs (we already have done it 

for x86)



Objective-C function signatures parsing 
example



LLVM generation
• Translation preserving semantics
• Simplification
– DCE (dead code elimination)
– MemProp
– ConstProp
• CFG region analysis



Example



Example



Example



3, 4: 

Vulnerabilities detection and results 
presentation



Pseudocode
LLVM to Objective-C/Swift-like pseudocode 

(more accurate for Objective-C)
– Function names, signatures
– Statements
– Arguments
– Types
– Call sites
– Structural analysis (WIP)



Pseudocode



Analysis

• Pattern matching on LLVM (detects most of vulnerabilities)

• TBD: deep dataflow analysis (e.g., taint analysis)

• LLVM to pseudocode mapping (for results presentation)



Vulnerabilities: data transfer

Weak SSL



Vulnerabilities: data transfer

No SSL



Vulnerabilities: bad crypto
MD5, SHA1, 3DES, etc…



Vulnerabilities: data storage
– Pasteboard usage
– NSLog
– Background mode



Vulnerabilities: reflection



Vulnerabilities: TBD
• Unencrypted sensitive data storage in application directory
• Cache of network requests
• Data validation (SQLi, XSS, path manipulation, …)
• Weak jailbreak detection
• Authentication (2fa, password complexity, number of attempts)



Statistics: vulnerabilities
Vulnerabilities

6%
7%

9%

9%

14%
15%

40%

NSLog
Deprecated
Reflection
Weak cipher
No SSL
Weak SSL
Pasteboard



Conclusion
• Our toolset can:
–Find vulnerabilities in iOS app using only its iTunes link
–Present these vulnerabilities on pseudocode

• Future work:
–Deep analysis (dataflow, etc.)
–Less false positives
–Objective-C/Swift decompilation



Questions?

alexandrov@smartdec.net
safin@smartdec.net


