
Dissecting QNX
Analyzing & Breaking Exploit Mitigations and PRNGs on QNX 6 and 7

Jos Wetzels, Ali Abbasi

Who are we?

Jos Wetzels Ali Abbasi

Independent Security Researcher @ Midnight Blue

(Previously) Security Researcher @ UTwente

This work part of MSc thesis @ TU/e

@s4mvartaka
http://www.midnightbluelabs.com
http://samvartaka.github.io

Ph.D. Candidate @ TU/e

Visiting Researcher @ RUB

ICS / Embedded Binary Security

@bl4ckic3

http://www.midnightbluelabs.com/
http://samvartaka.github.io/

ROADMAP

• Introduction to QNX

• OS & Security Architecture Outline

• QNX PRNGs

• QNX Exploit Mitigations

• Final Remarks

Introduction

• UNIX-Like, POSIX embedded RTOS.
• Initial release 1982, acquired by BlackBerry

• Closed-source, proprietary

• QNX 6.6 (March 2014): 32-bit

• QNX 7 (March 2017): 64-bit

• Mobile
• BlackBerry 10

• BlackBerry Tablet

• Only tip of iceberg…

Automotive

Cisco IOS-XR

• Carrier-Grade Routers: CRS, 12000, ASR9000

* IOS-XR, Partnering with Elastic: an overview – Jose Palafox et al., 2016

Many more critical systems

• Industrial Control Systems
• Westinghouse / AECL Nuclear Power Plants

• Caterpillar Surface Mining Control

• GE Mark VI Turbine Controller

• Novar HVAC

• Defense
• UAVs

• Military Radios

• Anti-Tank Guidance

• Etc.
• Medical

• Rail Safety

• …

What’s New?

• ‘Wheel of Fortune’ @ 33C3
• PRNG issues in VxWorks, RedactedOS, QNX <= 6.6

• This talk
• New QNX 7 userspace & kernelspace PRNGs

• Exploit Mitigations in QNX 6 & 7

OS & Security Architecture

QNX Security History

• BlackBerry Mobile Research (2011 - 2014)
• Alexander Antukh, Ralf-Philipp Weinmann, Daniel Martin Gomez, Zach Lanier et al.

• QNX IPC, PPS, Kernel Calls (2016)
• Alex Plaskett et al.

• Various individual vulnerabilities (2000 – 2008)
• Anakata, Julio Cesar Fort, Tim Brown
• Lot of setuid logic bugs & memory corruption vulns

• CIA Interest (Vault 7)

• No prior work on Exploit Mitigations or PRNGs

• Almost no prior work on internals

* QNX: 99 Problems but a Microkernel ain’t one! - Alex Plaskett et al., 2016

QNX Internals RE

• Sources of internals info
• QNX Developer Support Pages

• QNX Community Portal (Foundry27)
• BSPs, Networking Stacks, OS Wiki

• Does not cover ‘interesting’ stuff or most features in QNX > 6.4
• Nothing on mitigations, nothing on PRNGs 

• SDP includes RTOS, system binaries & Momentics Tool Suite
• Binaries with debug symbols available for myQNX members!

• Load microkernel with symbols into IDA, take manual route

QNX Boot Process

• Initial Program Loader (IPL) copies Image Filesystem (IFS) to RAM

• Startup (startup-*) program configures system (interrupt controllers, etc.)

• Microkernel (procnto) sets up kernel, runs buildfile (boot script for drivers
and OS components)

QNX Firmware

• Various QNX OS packages (Car, Safety, Medical)
• Same Neutrino microkernel and core service binaries

• QNX images come in three flavors
• OS image (IFS)

• Flash filesystem image (EFS)

• Embedded transaction filesystem image (ETFS)

• Can be combined into single image on eg. NAND
Flash

QNX Firmware

• Dump IFS & EFS using standard QNX utilities
• dumpifs, dumpefs

QNX Microkernel Architecture

QNX IPC Message Passing

Syscalls

• QNX supports minimal set of ‘native’ syscalls
• Threads, message passing, signals, clocks, interrupt handlers, etc.

• QNX < 90 vs Linux > 300 syscalls

• Prototypes in /usr/include/sys/neutrino.h

• Other POSIX syscalls implemented in libc as message passing stubs to responsible
userspace process

Syscalls

• Native syscalls invoked with usual instructions
• SYSENTER / INT 0x28 / SWI / SC / etc.

• Syscall # in EAX (x86), R12 (ARM), R0 (PPC)

• Listing in /usr/include/sys/kercalls.h

• Syscall entrypoint in __ker_entry / __ker_sysenter
• Save registers

• Switch to kernel stack

• Get active kernel thread

• Wait until we are on right CPU

• Acquire kernel

• Syscall # is index into ker_call_table

QNX Memory Layout

• Kernelspace – Userspace Separation
• Only microkernel runs in kernelspace

• Userspace separation of sensitive (OS, driver, etc.) code from regular applications
• Virtual Private Memory via MMU

• Unix-like process access controls

QNX User Management

• Typical Unix user & file permissions model
• /etc/passwd, /etc/group, /etc/shadow

• Usual utils login, su, etc.

• Also support for (M)ACL

• QNX 6 hashes
• SHA256, SHA512 (default)

• But also: MD5, DES crypt, qnx_crypt (legacy QNX 4)

• Cracked root / maintenance password
in embedded can have high shelf-life…

• QNX 7 or patched 6.6 hashes
• PBKDF2-SHA256/SHA512

QNX Process Management

• Process Manager is combined with microkernel in procnto executable
• Runs as root process with PID 1
• Invokes microkernel in same way as other processes
• But has _NTO_PF_RING0 process flag to call _ring0 syscall

• Support for usual POSIX stuff
• Spawn, fork, exec, …

• QNX uses ELF format

• If filesystem is on block-oriented device code & data are loaded into main memory

• If filesystem is memory-mapped (eg. flash) code can be executed in-place
• Multiple instances of same process share code memory

QNX Process Abilities

• procmgr_ability similar to Linux capabilities
• Obtain capabilities before dropping root

• Restrict actions for even root processes

• Integral to QNX ‘rootless execution’ security
• Principle of least privilege

• Abilities have domain (root/non-root), range (restrict values), inheritable, locked, etc.
• Eg. PROCMGR_AID_SPAWN_SETUID with range [800, 899]

• Can specify custom abilities

QNX Process Abilities Limitations

• Up to application developers & system integrators to get this right
• Watch out with inheritability (inheritable itself), fork() ignores this, spawn() honors this

• Some functionality uncovered by capabilities
• Filesystem, network, etc.

• Eg. root process with all capabilities dropped can still chmod / chown

• Some capabilities don’t have ranges
• Eg. if you have PROCMGR_AID_SPAWN, you can spawn what you want

• Various capabilities can be used to elevate privileges to root
• Some directly: PROCMGR_AID_SPAWN_SETUID without range

• Some more indirectly: PROCMGR_AID_INTERRUPT

• It’s not a true sandbox!

‘Breaking’ Rootless Execution

• Parent starts low-priv child with PROCMGR_AID_IO / PROCMGR_AID_INTERRUPT
• Child attaches custom ISR handler -> runs in kernelspace -> invoke arbitrary procnto code

Qnet (Native Networking / TDP)

Qnet Security

• Useful for eg.
• Inter-module communication in ICS

• Sharing cellular modem or Bluetooth transceiver among ECUs in automotive

• Large routers with multiple interface cards (LWM IPC in Cisco IOS-XR)

• /net directory populated by discovered or mapped Qnet nodes

Qnet Security

• Meant to be used among ‘trusted nodes’

• No authentication, simply passes User ID as part of Qnet packet to remote machine
• Execute commands remotely over Qnet

• Compromise single QNX machine or underlying network link
• access to all Qnet nodes at UID level

• No Qnet packet integrity / authentication …
• Forge UIDs

• mapany / maproot options to map incoming UID to low-priv UID (similar to NFS)

Qnet EoP Vulnerability (CVE-2017-3891)

• Read permissions of operations over Qnet are not properly resolved by resource
manager
• Allows for arbitrary remote read access

• Can also be used for local arbitrary read access by making read requests originate from remote
Qnet node

• Bypasses mapany / maproot

• Patch available but Qnet security
is fundamentally broken …

QNX Debugging

• QNX Momentics IDE integrates GDB debugger capabilities
• nto<arch>-gdb.exe

• pdebug
• Process-level debugging over serial or TCP/IP

• qconn
• Remote IDE connectivity

• Starts pdebug, default port 8000

• No authentication

• Upload / download files, run anything as root

• There’s a metasploit module for this

QNX Debugging

• dumper
• Service that produces post-crash core dump (default in /var/dumps)

• Directly dump running process with dumper –p <pid>

• Nice for integration into fuzzers

• KDEBUG (gdb_kdebug)
• Kernel debugger over serial

• Needs to be included with IFS (not by default, may need to be built from source)

• Needs debuggable procnto

QNX Debugging

• Kernel Dump Format
• S/C/F: Signal / Code / Fault (signal.h / siginfo.h / fault.h)

• C/D: Kernel code / data location

• state: Kernel state

• KSB: Kernel Stack Base

• [x] PID-TID=y-z: Process and Thread ID on CPU x

• P/T FL: Process and Thread Flags

• instruction: Instruction where error occurred

• context: Register values

• stack: Stack contents

Pseudo-Random Number
Generators (PRNGs)

PRNG Quality

• Why look at PRNGs?

• Foundation of wider cryptographic ecosystem
• ‘just use /dev/random’ is received wisdom

• Strength of exploit mitigations (should) depend on
strength of PRNGs
• If I can predict canary or ASLR address it makes exploit dev

a lot easier

QNX Security-Oriented PRNGs

Userspace PRNG

• Accessed through /dev/random

• Handled by userspace service random running as root

• Started after boot via /etc/rc.d/startup.sh

Kernelspace PRNG (QNX 7)

• Implemented in procnto as function named random_value

• Cannot be accessed directly in userspace

QNX 6 /dev/random

• Covered this in our talk ‘Wheel of Fortune’ at 33C3

• Brief recap
• Underlying PRNG based on Yarrow (Schneier et al.)

• But based on older Yarrow instead of reference Yarrow-160
• Has a bunch of sketchy cryptographic design decisions

• Low quality boot-time entropy

• Broken reseed control

• Entropy source selection up to
system integrators…

QNX 7 /dev/random

• Redesigned after our assessment of QNX 6 /dev/random
• Incorporates some of our feedback

• Uses Heimdal Fortuna implementation

• New entropy sources

• New reseed control mechanism

• Overall quality seems much better than QNX 6

• Potential for weaknesses depending on system integration conditions

QNX 7 /dev/random

QNX 7 Kernel PRNG

• QNX 7 introduced new
kernel PRNG after our
assessment

• Used for ASLR, Stack
Canaries, etc.

• random_seed set via
SysSrandom syscall
(requires
PROCMGR_AID_SRANDOM)

Exploit Mitigations

Exploit Mitigation Quality

• Why look at exploit mitigations?
• Mitigations in GP didn’t fall from the sky

• History of weaknesses, bypasses, etc. in GP

* Patching Exploits with Duct Tape: Bypassing Mitigations & Backward Steps – James Lyne et al., 2015

QNX Exploit Mitigations

No support for:

• Vtable Protection (eg. VTGuard, VTV)

• CPI / CFI (eg. CFG)

• Kernel Data / Code Isolation (eg. SMAP/PAN, SMEP/PXN)

• Etc.

Mitigation Support Since Enabled by Default?

Data Execution Prevention (DEP) 6.3.2 ✘

Address Space Layout Randomization (ASLR) 6.5 ✘

Stack Canaries 6.5 ✘

Relocation Read-Only (RELRO) 6.5 ✘

QNX DEP

• Hardware-based DEP support (eg. NX/XN bit)

• Insecure Defaults
• Stack always left executable
• GNU_STACK ELF program header ignored

• Need to specify “-m~x” in procnto startup flags to make stack non-exec
• Problem: this is system-wide setting, no opt-out

• Issue still present on QNX 6 & 7

Architecture Support

x86/x64 ✔

ARMv6+ ✔

MIPS ✘

PPC ~

QNX ASLR

• Enabled by starting procnto with “-mr” flag

• Child processes inherit parent ASLR settings

• Can be enabled/disabled on per-process basis

• Randomizes objects at base-address level

• Randomizes all memory objects except KASLR

• PIE disabled by default in toolchain, no system
binaries have PIE

Memory Object Randomized

Userspace

Stack ✔

Heap ✔

Executable Image ✔

Shared Objects ✔

mmap() ✔

Kernelspace

Stack ✔

Heap ✔

Kernel Image ✘

mmap() ✔

QNX ASLR

QNX ASLR – map_find_va

• (Among other things) randomizes virtual addresses returned by
mmap

• Subtracts or adds a random value from/to found VA
• Takes lower 32 bits of RNG result

• Bitwise left-shifted by 12

• Lower 24 bits extracted

• Contributes at most 12 bits of
entropy (worse in practice)

QNX ASLR – stack_randomize

• Randomizes stack start address

• Subtracts random value from original SP
• Takes lower 32 bits of RNG result
• Bitwise left-shifted by 4
• At most lower 11 bits extracted

• Contributes at most 7 bits of entropy
(also worse in practice)

• But: is combined with result of
map_find_va

QNX 6 ASLR – Weak RNG

• Upper bounds are actually optimistic

• QNX 6 ASLR uses weak RNG (CVE-2017-3893)

• ClockCycles()

• 64-bit free-running cycle counter

• Implementation is architecture-specific

Architecture ClockCycles
Implementation

x86 RDTSC

ARM Emulation

MIPS Counter Register

PPC Time Base Facility

SuperH TMU

QNX 6 ASLR – Weak RNG

• Evaluated actual entropy
• Measured processes across boot sessions, harvested memory object addresses

• Used NIST SP800-90B Entropy Source Testing (EST) tool to obtain min-entropy estimates

• 256 bits of uniformly random data = 256 bits of min entropy

• Average min-entropy: 4.47 bits

• Very weak, compare to
• Mainline Linux ASLR

• PaX ASLR

* 32-bit system, ASLR-NG – Ismael Ripoll-Ripoll et al., 2016

QNX 6 ASLR – Bruteforcing

QNX 6 ASLR – Bruteforcing

QNX 6 ASLR – procfs Infoleak (CVE-2017-3892)

QNX 6 ASLR – procfs Infoleak (CVE-2017-3892)

QNX 6 ASLR – LD_DEBUG Infoleak (CVE-2017-9369)

QNX 7 ASLR – Changes

• ASLR still disabled by default, no KASLR

• But uses kernel PRNG now
(random_value) discussed earlier

• Despite new RNG and 64-bit address
space, low theoretical upper bounds
remain
• 7 bits for stack_randomize

• 12 bits for vm_region_create

• Always loaded in lower 32-bits of
address space

QNX 7 ASLR – Changes

• LD_DEBUG (CVE-2017-9369)
Fixed!

• procfs (CVE-2017-3892)
Not completely Fixed…

QNX Stack Canaries

• QNX uses GCC’s Stack Smashing Protector (SSP)

• Compiler-side is what we’re used to and is ok

• OS-side implementations are custom

• Userspace master canary generated at program startup when libc is loaded

• Doesn’t use libssp’s __guard_setup but custom __init_cookies

QNX 6 SSP – Weak RNG

• Draws entropy from 3 sources
• Two of which only relevant if ASLR enabled

• All based on ClockCycles

QNX 6 SSP – Weak RNG

• Evaluated canary min-entropy over 3 configs
• No ASLR

• ASLR but no PIE

• ASLR + PIE

• Average min-entropy: 7.79 bits
• ASLR had no noticeable influence

• Less than ideal…

• Using CSPRNG should have 24 bits of min-entropy…
• We have 32-bit canary with 1 terminator-style NULL-byte

QNX 6 SSP – Kernelspace

• Problems even worse

• Microkernel neither loaded nor linked against libc

• Master canary generation cannot be done by __init_cookies

• BUT: QNX forgot to implement replacement master canary generation routine

• So kernelspace canaries are used, but never actually generated…
• Always 0x00000000

QNX 7 SSP – Changes

• Enabled by default! Generates 64-bit canaries

• For userspace QNX mixes in AUXV(AT_RANDOM) value with _init_cookies stuff
• Based on our best-practice suggestions to BlackBerry

• ELF auxiliary vector transfers kernel info to user process upon startup

• AT_RANDOM (0x2B) is 64-bit value from kernel PRNG

• For kernelspace QNX concats two 32-bit kernel PRNG values during early boot

Relocation Read-Only (RELRO)

• Dynamically linked binaries use relocation to do runtime
lookup of symbols in shared libraries.
• .got: holds offsets
• .plt: holds code stubs that look up addresses in .got.plt
• .got.plt: holds target addresses after relocation

• Relocation data is popular target for overwriting to hijack
control-flow

• Partial RELRO
• Reorder ELF sections so internal data (.got, .dtors, …) precedes program

data (.data, .bss)
• Relocation data is made read-only (covered by GNU_RELRO segment)

after relocation, PLT GOT still writable

• Full RELRO
• Lazy binding disabled with BIND_NOW flag
• PLT GOT is then also read-only

QNX 6 Broken RELRO (CVE-2017-3893)

Debian Linux QNX 6.6

• GNU_RELRO: [0x08049ED8, 0x8049FFF]
• Includes .got

•
•

•

QNX 6 Broken RELRO (CVE-2017-3893)

Debian Linux QNX 6.6

QNX 6 RELRO

• Also found a local bypass
• LD_DEBUG=imposter allows us to disable RELRO without privilege checks

• Nice for exploiting setuid binaries

• Both issues are fixed with patches for QNX 6.6 and in QNX 7 

Final Remarks

Patches

• Disclosed all issues to BlackBerry
• Most issues fixed in 7.0, patches for 6.6 available for some issues *

• Will take (lots of) time before patches filter down to OEMs & end-users…

* http:// support.blackberry.com/kb/articleDetail?articleNumber=000046674, http://www.qnx.com/download/group.html?programid=26071

Component Issue Affected

DEP Insecure Defaults <= 7.0

ASLR Weak RNG (CVE-2017-3893) <= 6.6 **

ASLR procfs infoleak (CVE-2017-3892) <= 7.0

ASLR LD_DEBUG infoleak (CVE-2017-9369) <= 7.0

SSP Weak RNG <= 6.6

SSP No kernel canaries <= 6.6

RELRO Broken implementation (CVE-2017-3893) <= 6.6

RELRO LD_DEBUG bypass <= 6.6

RNGs Weak /dev/random <= 6.6

RNGs No kernel PRNG <= 6.6

** Effectiveness still limited by low entropy upper bounds

Conclusions

• Mostly ok on toolchain side
• Some weak defaults, some linker mistakes

• Problems reside on OS-side
• QNX cannot benefit directly from work in GP OS security because not easy to port 1-to-1

• Result: homebrew DIY mitigations

• Lack of prior attention by security researchers is evident
• Vulns that feel like they’re from the early ‘00s

• Embedded RNG design remains difficult
• Entropy issues means design burden rests with system integrators

Conclusions

• QNX attempts to keep up with GP OS security

• One of the few non-Linux/BSD/Windows based embedded OSes with any exploit
mitigations
• See ‘The RTOS Exploit Mitigation Blues’ @ Hardwear.io 2017

• Quick & extensive vendor response, integration of feedback

• Need more attention to embedded OS security in general

• More QNX stuff in the future
• OffensiveCon, Black Hat Asia, Infiltrate

Questions?
See ‘Dissecting QNX’ whitepaper

@s4mvartaka
j.wetzels@midnightbluelabs.com

www.midnightbluelabs.com

@bl4ckic3
ali@ali.re

