
LINUX VULNERABILITIES,
WINDOWS EXPLOITS

Escalating Privileges with WSL

Saar Amar

Recon brx 2018

WHO AM I?

saaramar

Saar Amar

Security Researcher Pasten CTF team member

@AmarSaar

OUTLINE

World’s quickest intro to WSL

Vulnerability

• Demo

Exploit

• Problems

• Primitives

• Shaping the PagedPool

• Defeating KASLR

• Disabling SMEP

Demo

(not really surprising…)

WSL

Windows Subsystem for Linux

Introduced in Windows 10

Lets you execute Linux binaries natively on Windows

lxcore.sys implements all the functionality that a Linux application will expect
• Some parts from scratch (pipes)

• Some parts just are just wrappers around NT kernel API

Interested? Check out Alex Ionescu’s talk at Blackhat 2016
• http://www.alex-ionescu.com/publications/BlackHat/blackhat2016.pdf

http://www.alex-ionescu.com/publications/BlackHat/blackhat2016.pdf

WAIT JUST A SEC…

So… you want to tell me there is a whole new driver…

• which implements tons of functionality

• Does a lot of parsing

• Accessible from low-privileged users

• And you really expect me not to reverse it!?

CVE-2018-0743

• OK, so one weekend I wake up, trying to
understand some logic at lxcore

• Reversing… and suddenly I see an odd
behavior where the driver reads an array of
strings from userspace

• AKA lxcore!LxpUtilReadUserStringSet

lxcore!LxpUtilReadUserStringSet

Allocates a buffer on the PagedPool, used to hold the strings in the following
format:

THE VULNERABILITY

Let’s look at the calculation of the allocation size:

• Many integer overflow checks, but one is missing…
• Nothing checks overflow on 0x18 * argc (v_metadataArrSize)!
• And v_metadataArrSize is UINT32
• 2**32 / 0x18 == 0xaaaaaaa, so in this case v_metadataArrSize will end up 0
• The function will later fill these metadata structs out-of-bounds

THE VULNERABILITY

So how does it look like?

TRIGGERING THE VULNERABILITY

DEMO

POC TO PANIC

LET THE FUN BEGIN

MOTIVATION

“Before we get started, though, it’s worth briefly noting why there is so much value in
writing an exploit. Finding and eliminating bugs obviously improves software
correctness, but writing exploits is always a significant learning opportunity.
Throughout the history of the security industry, there’s a long track record of offense
driving defense, leading to technologies such as stack canaries, NX support in
processors and ASLR.”

Chris Evans

RESTRICTIONS

The corruption is a 32-bit wildcopy (4GB kernel memory overwrite)

• Kernel crashed on a write to an unmapped page, which means we don’t
natively control any interesting data in use

• Panic is 0x50, PAGE_FAULT_IN_NONPAGED_AREA

The content I corrupt with is not totally under my control

RESTRICTIONS

I can (partially) control the allocation size, but it has to be >= 0xaaaaaab (which means
chunk size 0xaaab000)

• Remember, there is an int overflow check over the addition!

size = sizeof(str_hdr_s) * argc + totalStrsLengths

…

…

STOPPING WILDCOPIES

This isn’t the first wildcopy exploit, so there are some known methods

Race the kernel on context switch between processes

• Need to execute code in time, and stop the wildcopy “cleanly”

• Downside: can be extremely unstable

Stagefright style: corrupt a function pointer that is called by definition while
the copy occurs

• We’re not lucky enough to have one of these in our case

Find a really cool and amazing trick, which is 100% reliable

• Mm…let’s do that ☺

DOUBLE FETCH

Remember I told you there is a double-fetch in my function?

• Read strings to calculate the sum of their lengths

• Allocate a huge chunk

• Copy the strings again from userspace into the chunk

THERE IS NO DOUBLE FETCH VULNERABILITY HERE

• Again guys, really, there isn’t

They check against the total length that there is no corruption

But… We don’t need a corruption, we just need to make the copy loop stop!

STOPPING THE WILDCOPY

Execve just reads argv until it
reaches NULL (it doesn’t get argc)

WINDOWS POOLS 101

ExAllocatePoolWithTag(pooltype, size, tag, …)
• roundup(size, 0x10)

• size < 0x200: lookasides && freelists

• 0x200 <= size < page: freelists

• size >= page: bitmap, lower page available, paged aligned

When you free a chunk, it goes to the freelist’s head

For example, to allocate 0x7d00:
• the pool allocates 0x8000

• returns 0x7d00 to caller

• inserts the remainder to the freelist’s tail

For more information, see Tarjei Mandt’s presentation:

https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-Slides.pdf

https://media.blackhat.com/bh-dc-11/Mandt/BlackHat_DC_2011_Mandt_kernelpool-Slides.pdf

SHAPE

SHAPE

SHAPE

SHAPE

SHAPE

But, I don’t have such big allocation primitive
• I can reach ~0x100000…but not 0x15560000

And if we spray with the “little” ones, until I free them all, some will be paged out
• Again, PagedPool, it’s not fs/networking/etc

So… need to find a larger allocation primitive

fcntl with F_SETPIPE_SZ, ring buffers!
• Can reach 0x2000000, 0x4000000

Spray with that, and…

NEXT LEVEL!

KERNEL VS USER?

OK! Finally, we have a good panic

Now, just choose what struct to target in our shape, and exploit its logic to
execute code

Two trivial options:
• Kernel – execute code from kernel VAS

• Find the PTE (randomized in Anniversary)
• Turnoff the NX bit

• User – execute code from user VAS
• There is no SMAP by design (easy to fake structs)
• We control everything – content, protection, etc
• Need to disable SMEP (cr4.bit20 &= ~(1<<20))

BTW, either ways won’t work with VSM (EPT and MBEC)
• Kudos to MSFT’s team for this mitigation!

Well, usually I build myself a nice relative/arbitrary read/write

But even if we find the perfect struct
• We corrupt with the struct

• And the pointer is paged out after the corruption…

But wait…

str_len can be mapped as a user address!

PRIMITIVES

SHM

You know it!
• shmget, shmat, shmctl

shmget() calls ExAllocatePoolWithTag on the PagedPool

And at the flow of shmat() we have:
• shm->file->ops->map()

jump to userspace code,
0xfc KeBugCheck

DEMO

ROP?

So we need to disable SMEP before calling userspace
• Usually done with ROP

shm->file is now in userspace memory, and it remains there

Result: we can call arbitrary kernel functions (as many times as we want)
• Step 1: set shm->file->ops->map, which is in our process’s memory, to the

kernel function address

• Step 2: call the syscall shmat, which will fail but will also call the target

Unlike ROP, our functions/gadgets should return with the same rsp

In reality, first call will disable SMEP, second one will be our shellcode

INFOLEAK

Go over all the writes to userspace

Need to choose a good struct for that
• Arbitrary / relative read

• Arbitrary is great for <Creators, just read the HAL HEAP

• After Creators, relative read is the best

Ideally, leak from a shm struct
• Best: from the very SAME shm we corrupted

• Keeps the shape simple

ARBITRARY READ

Great, from the shmctl IPC_STAT, it’s easy to leak PagedPool addresses
• our corruption writes PagedPool pointers over the shm struct

• read the overwritten fields with IPC_STAT

We can use the same trick for an (almost) arbitrary read:
• corrupt the next field of the shm struct to point to userspace

• point the next field of the userspace shm to the target kernel address

• call shmctl(IPC_STAT) to dereference!

(we have to know a single uint16 for the shmid)

ARBITRARY READ

HOWTO?

Shape the PagedPool
• Create huge workspace with following pages, and remaining SHM struct

• Make sure to create holes before the workspace

Free the workspace

fork()
• One thread triggers the vulnerability

• Second thread stops the wildcopy

Use arbitrary reads (through shmctl()), leak ntos base address

Call shmat(), trigger func pointer call

PROFIT

FINAL DEMO

THE END

Shoutouts!
• To the great folks at the MSRC!
• Matt Graeber
• Tomer Schwartz

• Recon brx 2018 team!

Slides, Video, full exploit:
• https://github.com/saaramar/execve_exploit
• https://www.youtube.com/watch?v=3deJvbBHET4&feature=youtu.be

Follow me on twitter: @AmarSaar

NEVER STOP REVERSEING AND EXPLOITING

https://github.com/saaramar/execve_exploit
https://www.youtube.com/watch?v=3deJvbBHET4&feature=youtu.be

Questions?

Thank you ;)

