
Breaking the Glass Sandbox:
Find Kernel Bugs and Escape

RECon Montreal 2022

Valentina Palmiotti

ABOUT ME

Strange Beginnings
Background in economic research
prior to switching to security

Offensive Minded
Focus on exploit development, techniques, and
vulnerabilities at the OS level.

Interested in anything and everything offensive
security

OS Internals
Linux (kernel), Windows, Android

Lead Security Researcher at Grapl, a next generation SIEM

Inspiration for this Talk

C

A

B

Android Rooting Community

Why can’t we use a generic kernel bug
to get root?

 OR

I have a root shell, but it’s useless!

WTF Does a Sandbox Do?

What are the actual restrictions that
sandboxing methods impose with
respect to the kernel? How much
access/attack surface am I giving to
random apps I install?

Better Bug Hunting
What kinds of bugs CAN we use?
How do I find them?

Require different but complementary skills

Exploit Development Vulnerability Research

Tool Building

Creating tools that find bugs (ex:
fuzzers i.e. corpus creation
coverage, static analyzers etc)

Code Auditing

Identifying vulnerabilities by
meticulously reading code or
reverse engineering disassembly

Exploitability

Recognizing whether a bug is
exploitable and how complicated

it will be

Weaponization

Responsible for turning the
theoretical impact of a bug into

a real attack

vs

Location, Location, Location

Identifying where in a code base
a bug will be most useful

Executing software in a restricted operating system
environment, thus controlling the resources (e.g. file

descriptors, memory, file system space, etc.) that a process
may use

What is a Sandbox?

What about containers?
Is it a security boundary? Yes, because containers provide
restrictions on access to resources. Containers are built on

sandboxing primitives.

What to keep in mind before you start bug hunting

Why Should I Care?

Security Impact
Kernel bugs that bypass one or more
sandboxing boundary are most
valuable because they work on the
most systems

Standardize Exploits

Often the type of bugs that are easier to
exploit generically

Shorter Chain
The more sandboxing primitives
bypassed, the shorter the chain of
bugs needed to finish privilege
escalation.

How does a process interact with the kernel?

Processes interact by
making system calls into
the operating system (i.e.
the kernel).

System calls are an
interface to the services
provided by the OS

Kernel is responsible for
enforcing security - is
this application allowed
to access the resource
it’s asking for?

And can we break them?

How are these Boundaries Enforced?

Still Need Kernel
Untrusted processes still
need some access to the
kernel

A
Lots of Bugs
The Linux kernel has lots of
bugs to be found.

B
New systems + redesigns
New kernel subsystems and
redesigns of kernel
components introduce new
attack surfaces reachable
from sandbox

C

Picking a Target in the Kernel

&

Reducing Code Subset
Honing in on a particular subset of code you are considering

Finding More Reachable Code

Learning the internals of how the Linux kernel
works and models things to push the limits of the
sandbox and find more reachable code

What are they?

Kernel Sandboxing Mechanisms

Users/Groups - Traditional Unix system of users, groups, and RWX permissions
(DAC)

Capabilities - Controls access to system-level privileges that are not covered by traditional file privileges.

Namespaces - Partitions global kernel resources such that one set
of processes sees one set of resources while another set of processes
sees a different set of resources

seccomp - System call filtering

Linux Security Modules (LSM) - Hooks in user level system calls where loaded security modules
are called into and return an access decision. (Ex: SELinux, App Armour)

Sandboxing != Post /Exploitation Mitigation

These methods are intended to reduce reachable attack surface. They ARE NOT intended to provide any sort of protection

if a reachable kernel vulnerability exists and/or has been exploited. Even if some vendors may try to use them that way.

Reachable kernel bug == WIN (game over)

System call filtering

seccomp

• Original: Strict Mode:

• Only allow the syscalls exit(), sigreturn(), read() and write() to already-open file descriptors.

• If any other syscall is made, the process is killed using SIGKILL

• Seccomp-bpf

Filtering of system calls using a configurable policy using a classic BPF (not eBPF) program.

• Seccomp provides a means filter accessible system calls from a process.

• Specifically Designed to Reduce Reachable Kernel Code - Limiting code as an attack surface

System call filtering - problems

seccomp

• Restricts types of system calls can be called, but unable to do deep argument inspection

• Filters can only look at top level system call arguments, pointers can’t be dereferenced

• Developers need to think about what system calls their applications make, not what resources it accesses

• Can cause compatibility issues - ex: a libraries getting recompiled using new system calls, vDSO

• Easier to make policy a deny list vs allow list — weakening attack surface reduction

Remember, everything on Linux is a file! File operations for different file types are handled by

File operation functions defined in this structure.

File Operation structure for /proc/<pid>/mem

/proc/<pid>/mem: Read/Write Implementation in the Kernel

SELinux
Mandatory Access Control (MAC)

SELinux is a Linux Security Module which allows administrators mandatory access control. SELinux adds finer granularity to access
controls.

SELinux
Mandatory Access Control (MAC)

SELinux is a Linux Security Module which allows administrators mandatory access control. SELinux adds finer granularity to access
controls.

Reminder: Access check functions run as hooks in the kernel

Mandatory Access Control (MAC)

SELinux

Source context: shell

Target context: netd

Class: unix stream socket

Permission: Connect

It has no concept of a "root" superuser.

• Has both userspace and kernel components that enforce policy. SELinux Policy developers
have to be aware of various implementation details

• It’s very complex. Hard to write scalable and maintainable policy

• Because of this, misconfigurations are common

• Implementation bugs in the kernel also occur

SELinux
Mandatory Access Control (MAC)

• Not implementing granular control for new components: ex Qualcomm NPU
driver - Your security is only as good as your policy.

• Doesn’t work if reachable code doesn’t have an LSM hook (i.e. io_uring)

• Incorrect implementations

• SEPolicy disabling entire runtime mitigations: ex mmap_min_addr,

• hook functions ex: CVE-2020-10751 netlink sendmsg message handling

SELinux
Examples of Mistakes and Areas for Attack

Opportunity to find policy gaps such as these with the SELinux static
analyzers i.e. SELint , which looks for SEPolicy convention violations, poor
style and policies that could cause unexpected/insecure outcomes

Namespaces

• Way to isolate a containerized application into its own file system,
process space, etc.

• Often times containers are configured s.t. the application runs with
higher privileges in the container namespace. Ex: container application
runs as root in its namespace

• Creating a user namespace from unprivileged is allowed by default in
popular distributions

• Bugs in “privileged” kernel code now have more severe security
implications

• Reachable via fsconfig system call. File systems that don’t set
init_fs_context field in fs_context structure default to legacy (there are
tons of them)

• Leads to buggy legacy code - heap overflow in legacy_parse_param due
to integer underflow

CVE-2022-0185

General Places to Look

• Subsystems that don’t necessarily perform "privileged actions” but run complex
code.

Ex:

• io_uring

• NPU driver

General Places to Look

• IPC mechanisms/protocol that allow process to access “locked down” resources

• Binder Driver (Android)

• Pipes, sockets, weird files

• “Weird” files and filesystem operations

• System calls or kernel entry points without LSM hooks

• io_uring

• (Formerly) perf

io_uring

• Redefines how system calls are done in Linux (makes async syscalls
possible)

• Can be used to effectively bypass seccomp

• No LSM hooks on io_uring operations themselves -> no LSM sandboxing

• Not a bypass LSM for system call operations, but complex io_uring
code is all reachable

• Rapidly growing codebase, getting frequent major refactors — BUG$

io_uring

• Just need to be able to read or write from a file that doesn’t implement
read{write}_iter

• Lots of files don’t

• ex: /proc/self/maps

• Sandboxed processes usually have *some* access to procfs because

LSM security context information is stored in /proc/self/attr/current.

CVE-2021-41073

• Now you have an idea of places to look - what are good strategies to find
bugs?

OK - now how do I find bugs?

• Don’t necessarily have to set up your fuzzer- can view live bugs being
found on syzbot website

• Plenty of opportunities to improve coverage

• Writing new system call descriptions for kernel interfaces with poor

coverage

• Vendor/hardware drivers that are open source but not being

fuzzed

• Tool calibration - is it finding Ndays?

syzkaller

• Coverage guided kernel fuzzer

• Has built in support for setuid and namespace sandboxing - can be
tweaked to work with custom SELinux policy.

• Looking at already reported bugs in a subsystem you want to target

• Understand security impact and exploitability

• Write your own exploits

• Often leads to finding other bugs in the process

• Bypassing sandboxing and exploit mitigations - good learning

experience for learning OS internals.

N-Days

• Linux kernel culture is still very much hostile to security - “a bug is a bug”

• Leads to obfuscating security related implications in commit messages

• Exploitable bugs get fixed with no CVE by default!

• Often security related patches are not back ported to older kernel versions,
which are used by many embedded devices.

• Individual vendors and distros are forced to cherry pick security commits. This
difficult to do if there is no unified way to identify what is a security patch and
what isn’t.

• Bad for security overall - recent ITW exploits targeting “0days” that have
already been patched upstream for years - but good for offense :)

• Being vigilant in upstream commits yields really fruitful results with great
bugs.

Patch Gaps!

Valentina Palmiotti

Twitter: @chompie1337

GitHub: chompie1337

Questions?

