/gentin’a Pal

e RE@®RMMontreal 2022




ABOUTME

Lead Security Researcher at Grapl, a next generation SIEM

Strange Beginnings

Background in economic research
prior to switching to security

Offensive Minded

Focus on exploit development, techniques, and
vulnerabilities at the OS level.
Interested in anything and everything offensive

security

OS Internals

Linux (kernel), Windows, Android




Inspiration for this Talk

Android Rooting Community

Why can't we use a generic kernel bug
to get root?

OR
| have a root shell, but it's useless!

WTF Does a Sandbox Do?

What are the actual restrictions that
sandboxing methods impose with
respect to the kernel? How much
access/attack surface am | giving to
random apps | install?

/ Better Bug Hunting

I
: c What kinds of bugs we use?
\ How do | find them?



Weaponization

Responsible for turning the
theoretical impact of a bug into
a real attack

Exploitability

Recognizing whether a bug is
exploitable and how complicated
it will be

Location, Location, Location

Identifying where in a code base

a bug will be most useful

Exploit Development

Require different but

VS

Vuinerability Research

skills

Code Auditing

Identifying vulnerabilities by
meticulously reading code or
reverse engineering disassembly

Creating tools that find bugs (ex:
fuzzers i.e. corpus creation
coverage, static analyzers etc)



Whatis a Sandbox?

Executing software in a restricted operating system

environment, thus controlling the (e.g.file
descriptors, memory, file system space, etc.) that a process
may use

Whataboutcontainers?

Is it a security boundary? Yes, because containers provide
restrictions on access to resources. Containers are built on
sandboxing primitives.




Why ShouldiCare?

What to keep in mind

Kernel bugs that bypass one or more
sandboxing boundary are most
valuable because they work on the
most systems

Shorter Chain

The more sandboxing primitives
bypassed, the shorter the chain of
bugs needed to finish privilege
escalation.

Standardize Exploits

Often the type of bugs that are easier to
exploit generically




How does a processinteractwith the kemel?

Processes interact by
making system calls into
the operating system (i.e.
the kernel).

System calls are an
interface to the services I
provided by the OS - network

all-knowing
kernel

system calls

s hardware
application

Kernel is responsible for -

enforcing security - is everything

this application allowed

to access the resource

it’s asking for?




How are these Boundanes Enforced?

And can we them?

A

/ ——=

-

Still Need Kernel Lots of Bugs New systems + redesigns

Untrusted processes still B The Linux kernel has lots of c New kernel subsystems and

need some access to the bugs to be found. redesigns of kernel
ClaE] components introduce new

attack surfaces reachable
fromn sandbox




Picking aTargetintheKemel

Reducing Code Subset

Honing in on a particular subset of code you are considering

&

Finding More Reachable Code

Learning the internals of how the Linux kernel
works and models things to push the limits of the
sandbox and find more reachable code




Kemel Sandboxing Mechanisms

What are they?

Users/Groups - Traditional Unix system of users, groups, and RWX permissions
(DAC)

Capabilities - Controls access to system-level privileges that are not covered by traditional file privileges.

Namespaces - Partitions global kernel resources such that one set
of processes sees one set of resources while another set of processes
sees a different set of resources

System call filtering

Linux Security Modules (LSM) - Hooks in user level system calls where loaded security modules
are called into and return an access decision. (Ex: SELinux, App Armour)



Sandboxing '=Post [Exploitation Mitigation

These methods are intended to reduce reachable attack surface. They ARE NOT intended to provide any sort of protection
if a reachable kernel vulnerability exists and/or has been exploited. Even if some vendors may try to use them that way.

Reachable kernel bug == WIN (game over)



SecComp

System call filtering

e Seccomp provides a means filter accessible system calls from a process.

e Specifically Designed to Reduce Reachable Kernel Code - Limiting code as an attack surface

e Original: Strict Mode:
* Only allow the syscalls exit(), sigreturn(), read() and write() to already-open file descriptors.
* If any other syscall is made, the process is killed using SIGKILL

e Seccomp-bpf
Filtering of system calls using a configurable policy using a classic BPF (not eBPF) program.



seccomp

System call filtering - problems

* Developers need to think about what system calls their applications make, not what resources it accesses
e Can cause compatibility issues - ex: a libraries getting recompiled using new system calls, vDSO
e Easier to make policy a deny list vs allow list — weakening attack surface reduction

* Restricts types of system calls can be called, but unable to do deep argument inspection
* Filters can only look at top level system call arguments, pointers can’t be dereferenced



Remember, everything on Linux is a file! File operations for different file types are handled by
File operation functions defined in this structure.

File Operation structure for /proc/<pid>/mem

static const struct file_operations proc_mem_operations = {

. Llseek = mem_1lseek,

. read = mem_read,
.write = mem_write,
.open = mem_open,

. release = mem_release,



[/proc/<pid>/mem: Read/Write Implementation in the Kernel

static ssize t mem rw(struct file *file, char _ user *buf,
size t count, loff t *ppos, int write)

{

struct mm_struct *mm = file->private_data;

unsigned long addr = *ppos;

ssize_t copied;

char *page;

unsigned int flags;

if (!mm)
return 0;

page = (char *)_ get_free_ page(GFP_KERNEL) ;
if (!page)
return -ENOMEM;

copied = 0;
if (!mmget not zero(mm))
goto free;

flags = FOLL FORCE | (write ? FOLL WRITE : 0);

while (count > 0) {
int this len = min t(int, count, PAGE SIZE):

if (write && copy from user(page, buf, this len)) {
copied = -EFAULT;
break;

}

this len = access_remote _vm(mm, addr, page, this len, flags);
if (!this len) {
if (!copied)
copied = -EIO;
break;

}

if (!write && copy to user(buf, page, this len)) {
copied = -EFAULT;
break;

}

buf += this len;
addr += this len;
copied += this len;
count -= this len;
}
*ppos = addr;

mmput (mm) ;

free page((unsigned long) page);
return copied;




SELInuX

Mandatory Access Control (MAC)

SELinux is a Linux Security Module which allows administrators mandatory access control. SELinux adds finer granularity to access
controls.



SELInuUX

Mandatory Access Control (MAC)

SELinux is a Linux Security Module which allows administrators mandatory access control. SELinux adds finer granularity to access
controls.

Reminder: Access check functions run as hooks in the kernel

SYSCALL _DEFINES (perf event_open,
struct perf event_attr _ user *, attr uptr,
pid_t, pid, int, cpu, int, group fd, unsigned long, flags)

struct perf event *group leader = NULL, *output event = NULL;
struct perf event *event, *sibling;
struct perf event_attr attr;

struct perf event context *ctx, *gctx;
struct file *event_file = NULL;

struct fd group = {NULL, 0};

struct task_struct *task = NULL;
struct pmu *pmu;

int event_fd;

int move group = 0;

int err;

int £ flags = O_RDWR;

int cgroup fd = -1;

/* for future expandability... */
if (flags & ~PERF_FLAG ALL)
return -EINVAL;

/* Do we allow access to perf event open(2) ? */
err = security perf event open(&attr, PERF_SECURITY OPEN);
if (err)

return err;




SELInuUX

Mandatory Access Control (MAC)

It has no concept of a "root" superuser.

avc: denied { connectto } for pid=2671 comm="binder uaf" path="/dev/socket/dnsproxyd”
scontext=u:r:shell:s0 tcontext=u:r:netd:s0 tclass=unix stream socket

Source context: shell
Target context: netd
Class: unix stream socket
Permission: Connect



SELInuUX

Mandatory Access Control (MAC)

e Has both userspace and kernel components that enforce policy. SELinux Policy developers
have to be aware of various implementation details

e |t's very complex. Hard to write scalable and maintainable policy
e Because of this, misconfigurations are common

e [mplementation bugs in the kernel also occur



SELINnuUX

Examples of Mistakes and Areas for Attack

 Not implementing granular control for new components: ex Qualcomm NPU
driver - Your security is only as good as your policy.

e Doesn’t work if reachable code doesn’t have an LSM hook (i.e. io uring)
e Incorrect implementations
« SEPolicy disabling entire runtime mitigations: ex mmap min_addr,

e hook functions ex: CVE-2020-10751 netlink sendmsg message handling



Namespcces

« Way to isolate a containerized application into its own file system,
process space, etc.

o Often times containers are configured s.t. the application runs with
higher privileges in the container namespace. Ex: container application
runs as root in its namespace

e Creating a user namespace from unprivileged is allowed by default in
popular distributions

e Bugs in “privileged” kernel code now have more severe security
implications



CVE-2022-0185

e Reachable via fsconfig system call. File systems that don’t set
init fs context field in fs context structure default to legacy (there are
tons of them)

e Leads to buggy legacy code - heap overflow in legacy parse param due
to integer underflow

if (len > PAGE SIZE - 2 - size)

retcurn

invalf(fc, "VFS: Legacy: Cumulative options too large");






Generadl PlacestolLook

e Subsystems that don’t necessarily perform "privileged actions” but run complex
code.

EX:
e |O_UrINg
« NPU driver
e [IPC mechanisms/protocol that allow process to access “locked down” resources

e Binder Driver (Android)
e Pipes, sockets, weird files
e “Weird” files and filesystem operations
e System calls or kernel entry points without LSM hooks
® [0 _Uring

e (Formerly) perf



lo_unng

User Space Kernel Space

io_uring_submit io_uring_enter

Application

Shared Memory

Arrow Color Key ..l

. reads new SQEs
@ iiburing AP call .

async work queue

. io_uring system call

operation will block,
placed in async work queue

operation won't block,
completed synchronously

g
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



« Redefines how system calls are done in Linux (makes async syscalls
possible)

e Can be used to effectively bypass seccomp
« No LSM hooks on io uring operations themselves -> no LSM sandboxing

e Not a bypass LSM for system call operations, but complex io uring
code is all reachable

 Rapidly growing codebase, getting frequent major refactors — BUGS



CVE-2021-41073

 Just need to be able to read or write from a file that doesn’t implement
read{write} iter

e Lots of files don’t
e ex: /proc/self/maps

« Sandboxed processes usually have *some™* access to procfs because
LSM security context information is stored in /proc/self/attr/current.



don t have ->read 1iter() ana ->write 1iter(),

* by looping over ->read() or ->write() manually.

static ssize t loop rw iter(int rw, struct io kiocb *req, struct iov iter *iter)
{

struct kiocb *kiocb = &reqg->rw.kiocb;

struct file *file = req->file;

ssize t ret = 0;

- N ' 4 - - 11 J hvyArimvh Tl | ™ - J - r
* Don 't support polled IO through this interface, and we can't

L

~3 -4 n_ 1 rbhhar Enay &) ] o - h vy o g =19 &9 23 0
Ssupport non-blocking either. For the latter, this just causes

* the kiocb to be handled from an async context.
if (kiocb->ki flags & IOCB_HIPRI)
return -EOPNOTSUPP;
if (kiocb->ki flags & IOCB_NOWAIT)
return -EAGAIN;

while (iov_iter count(iter)) ({
struct lovec 1ovec;
ssize t nr;

if (!iov_iter is bvec(iter)) {
iovec = iov iter iovec(iter);

} else {
iovec.iov _base = u64 to user ptr(req->rw.addr);
iovec.iov_len = req->rw.len;

1f (rw == READ) {

nr = file->f op->read(file, iovec.iov base,
iovec.iov len, io kiocb ppos(kiocb));
} else {
nr = file->f op->write(file, iovec.iov base,
iovec.iov_len, io kiocb ppos(kiocb));
}
if (nr < 0) {
1f (!ret)
ret = nr;
break;

}

ret += nr;

i1f (nr != iovec.iov len)
break;

reg->rw.len -= nr;

req->rw.addr += nr;

iov_iter advance(iter, nr);

return ret;



OK -nowhowdolfind bugs?

« Now you have an idea of places to look - what are good strategies to find
bugs?



syzkailler

e Coverage guided kernel fuzzer

e Don’t necessarily have to set up your fuzzer- can view live bugs being
found on syzbot website

e Plenty of opportunities to improve coverage

o Writing new system call descriptions for kernel interfaces with poor
coverage

« Vendor/hardware drivers that are open source but not being
fuzzed

e Tool calibration - is it finding Ndays?

e Has built in support for setuid and namespace sandboxing - can be
tweaked to work with custom SELinux policy.



N-Days

e Looking at already reported bugs in a subsystem you want to target
o Understand security impact and exploitability
e Write your own exploits

o Often leads to finding other bugs in the process

e Bypassing sandboxing and exploit mitigations - good learning
experience for learning OS internals.



Patch Gaps!
e Linux kernel culture is still very much hostile to security - “a bug is a bug”
e Leads to obfuscating security related implications in commit messages

e Exploitable bugs get fixed with no CVE by default!

o Often security related patches are not back ported to older kernel versions,
which are used by many embedded devices.

 Individual vendors and distros are forced to cherry pick security commits. This
difficult to do if there is no unified way to identify what is a security patch and
what isn’t.

e Bad for security overall - recent ITW exploits targeting “Odays” that have
already been patched upstream for years - but good for offense :)

e Being vigilant in upstream commits yields really fruitful results with great
bugs.






